University of Tasmania
Browse
130820 - Capillary gap flow cell as capillary-end electrochemical detector in flow-based analysis.pdf (5.58 MB)

Capillary gap flow cell as capillary-end electrochemical detector in flow-based analysis

Download (5.58 MB)
journal contribution
posted on 2023-05-20, 00:51 authored by Islam, MA, Lam, SC, Li, Y, Mostafa Atia AbuzeidMostafa Atia Abuzeid, Mahbub, P, Nesterenko, PN, Brett PaullBrett Paull, Miroslav MackaMiroslav Macka
A gap flow cell (gap-FC) as a capillary-end electrochemical (EC) detector, incorporating exchangeable screen-printed electrodes, that facilitates adjustment of the gap distance between the capillary outlet and working electrode down to 30 μm was investigated. The analytical performance of the gap-FC was assessed in terms of detector response (current), the efficiency of EC conversion of ferrocyanide, and effective cell volume, as a function of flow rate and gap distance, within a range of 0.1-200 μL min-1 and 30-100 μm, respectively. As a result, an efficiency of EC conversion within the range of ∼1.5-11% (∼3-16 times higher than wall-jet FC), at an effective cell volume of ∼30-75 nL, was achieved. The gap-FC was applied as a liquid chromatography EC detector, coupled with standard and capillary format liquid chromatographs, where the analytical performance of gap-FC was compared with that of a UV detector. With the standard LC, the sensitivity for ascorbic acid, 2,3-dihydroxybenzoic acid and pyrocatechol, was greater than with the UV detector, with limits of detection (LODs) one order of magnitude lower for the gap-FC (0.10 μM, 0.09 μM, 0.19 μM, respectively, RSD 1.35-3.8%, n = 9, linearity r2 ∼0.99 for concentration range 1-100 μM). LODs of test electroactive solutes using the gap-FC were ∼2 times lower than LODs reported in existing literature using standard EC detectors, including wall-jet and thin-layer FCs.

History

Publication title

Electrochimica Acta

Volume

303

Pagination

85-93

ISSN

0013-4686

Department/School

Marketing

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Rights statement

© 2019 Published by Elsevier Ltd.

Repository Status

  • Restricted

Socio-economic Objectives

Scientific instruments

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC