eCite Digital Repository

Forecasting future global food demand: A systematic review and meta-analysis of model complexity

Citation

Flies, EJ and Brook, BW and Blomqvist, L and Buettel, JC, Forecasting future global food demand: A systematic review and meta-analysis of model complexity, Environment International, 120 pp. 93-103. ISSN 0160-4120 (2018) [Refereed Article]

Copyright Statement

Copyright 2018 Elsevier Ltd.

DOI: doi:10.1016/j.envint.2018.07.019

Abstract

Predicting future food demand is a critical step for formulating the agricultural, economic and conservation policies required to feed over 9 billion people by 2050 while doing minimal harm to the environment. However, published future food demand estimates range substantially, making it difficult to determine optimal policies. Here we present a systematic review of the food demand literature - including a meta-analysis of papers reporting average global food demand predictions - and test the effect of model complexity on predictions. We show that while estimates of future global kilocalorie demand have a broad range, they are not consistently dependent on model complexity or form. Indeed, time-series and simple income-based models often make similar predictions to integrated assessments (e.g., with expert opinions, future prices or climate influencing forecasts), despite having different underlying assumptions and mechanisms. However, reporting of model accuracy and uncertainty was uncommon, leading to difficulties in making evidence-based decisions about which forecasts to trust. We argue for improved model reporting and transparency to reduce this problem and improve the pace of development in this field.

Item Details

Item Type:Refereed Article
Keywords:food demand, prediction, model complexity, global, aggregation, gross domestic product, modelling, meta-analysis
Research Division:Environmental Sciences
Research Group:Environmental Science and Management
Research Field:Natural Resource Management
Objective Division:Environment
Objective Group:Ecosystem Assessment and Management
Objective Field:Ecosystem Assessment and Management of Farmland, Arable Cropland and Permanent Cropland Environments
UTAS Author:Flies, EJ (Dr Emily Flies)
UTAS Author:Brook, BW (Professor Barry Brook)
UTAS Author:Buettel, JC (Dr Jessie Buettel)
ID Code:130690
Year Published:2018
Deposited By:Plant Science
Deposited On:2019-02-07
Last Modified:2019-04-17
Downloads:0

Repository Staff Only: item control page