eCite Digital Repository
Effects of sex and DTNBP1 (dysbindin) null gene mutation on the developmental GluN2B-GluN2A switch in the mouse cortex and hippocampus
Citation
Sinclair, D and Cesare, J and McMullen, M and Carlson, GC and Hahn, CG and Borgmann-Winter, KE, Effects of sex and DTNBP1 (dysbindin) null gene mutation on the developmental GluN2B-GluN2A switch in the mouse cortex and hippocampus, Journal of Neurodevelopmental Disorders, 8 Article 14. ISSN 1866-1947 (2016) [Refereed Article]
![]() | PDF 2Mb |
Copyright Statement
Copyright 2016 Sinclair et al. Licensed under Creative Commons CC0 1.0 Universal (CC0 1.0)Public Domain Dedication https://creativecommons.org/publicdomain/zero/1.0/
DOI: doi:10.1186/s11689-016-9148-7
Abstract
Background:Neurodevelopmental disorders such as autism spectrum disorders and schizophrenia differentially impact males and females and are highly heritable. The ways in which sex and genetic vulnerability influence the pathogenesis of these disorders are not clearly understood. The N-methyl-D-aspartate (NMDA) receptor pathway has been implicated in schizophrenia and autism spectrum disorders and changes dramatically across postnatal development at the level of the GluN2B-GluN2A subunit "switch" (a shift from reliance on GluN2B-containing receptors to reliance on GluN2A-containing receptors). We investigated whether sex and genetic vulnerability (specifically, null mutation of DTNBP1 [dysbindin; a possible susceptibility gene for schizophrenia]) influence the developmental GluN2B-GluN2A switch.
Methods: Subcellular fractionation to enrich for postsynaptic density (PSD), together with Western blotting and kinase assay, were used to investigate the GluN2B-GluN2A switch in the cortex and hippocampus of male and female DTNBP1 null mutant mice and their wild-type littermates. Main effects of sex and DTNBP1 genotype, and interactions with age, were assessed using factorial ANOVA.
Results: Sex differences in the GluN2B-GluN2A switch emerged across development at the frontal cortical synapse, in parameters related to GluN2B. Males across genotypes displayed higher GluN2B:GluN2A and GluN2B:GluN1 ratios (p < 0.05 and p < 0.01, respectively), higher GluN2B phosphorylation at Y1472 (p < 0.01), and greater abundance of PLCγ (p < 0.01) and Fyn (p = 0.055) relative to females. In contrast, effects of DTNBP1 were evident exclusively in the hippocampus. The developmental trajectory of GluN2B was disrupted in DTNBP1 null mice (genotype × age interaction p < 0.05), which also displayed an increased synaptic GluN2A:GluN1 ratio (p < 0.05) and decreased PLCγ (p < 0.05) and Fyn (only in females; p < 0.0005) compared to wild-types.
Conclusions: Sex and DTNBP1 mutation influence the GluN2B-GluN2A switch at the synapse in a brain-regionspecific fashion involving pY1472-GluN2B, Fyn, and PLCγ. This highlights the possible mechanisms through which risk factors may mediate their effects on vulnerability to disorders of NMDA receptor dysfunction.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | sex, DTNBP1, dysbindin, NMDA receptor, brain |
Research Division: | Biomedical and Clinical Sciences |
Research Group: | Neurosciences |
Research Field: | Cellular nervous system |
Objective Division: | Health |
Objective Group: | Clinical health |
Objective Field: | Clinical health not elsewhere classified |
UTAS Author: | Sinclair, D (Dr Duncan Sinclair) |
ID Code: | 130627 |
Year Published: | 2016 |
Web of Science® Times Cited: | 14 |
Deposited By: | Wicking Dementia Research and Education Centre |
Deposited On: | 2019-02-06 |
Last Modified: | 2019-04-08 |
Downloads: | 31 View Download Statistics |
Repository Staff Only: item control page