University of Tasmania
Browse
130556 - Density-dependent feedbacks, hysteresis, and demography of overgrazing sea urchins.pdf (2.6 MB)

Density-dependent feedbacks, hysteresis, and demography of overgrazing sea urchins

Download (2.6 MB)
journal contribution
posted on 2023-05-20, 00:24 authored by Scott LingScott Ling, Kriegisch, N, Bailee WoolleyBailee Woolley, Reeves, SE
Sea urchin grazing can result in regime shift from productive kelp beds to sea urchin barren grounds that represent an alternative and stable reef state. Here we examine the stability of urchin barrens by defining the demographics of the Australian urchin Heliocidaris erythrogramma during regime shift to, and maintenance of, barrens. Inverse-logistic modeling of calibrated in situ annual growth increments for five urchin populations, two from kelp beds and three from barrens, demonstrate slowing of urchin growth as availability and consumption of standing and/or drift kelp declines. Population age structures were predicted from observed sizes over four years (2012–2015, n = 5,864 individuals), which indicated stable age distributions for populations both maintaining barrens and actively grazing among kelp beds. Younger age distributions occurred on barrens whereas more mature populations existed within kelp beds, indicating that high recruitment facilitates maintenance of barrens while overgrazing appeared more reliant on adult urchins grazing from the edges of kelp beds, as opposed to juvenile recruitment among kelp. Leslie-matrix projections indicated potential for unchecked population growth for all study populations, but which varied depending on whether local or regional recruitment rates were modeled. Ultimately, strong density dependence was observed to check population growth; with high-recruitment/high-density populations offset by reduced growth rates and decreased longevity. Increasing disease rates among older urchins in high density populations were consistent with observed density-dependent mortality, while tethering of healthy urchins revealed highest predation on small urchins within kelp beds, suggesting some remnant resilience of declining kelp habitat. Results demonstrate that the greatest opportunity for urchin population control is when reefs exist in the kelp bed state, at which point urchin populations are prone to negative feedback. Conversely, control of urchins on barrens is demonstrably difficult given positive density-dependent feedbacks that act to stabilize population size and which evidently underpin the hysteresis effect governing the persistence of this alternative stable state.

Funding

Australian Research Council

History

Publication title

Ecology

Volume

100

Article number

e02577

Number

e02577

Pagination

1-19

ISSN

0012-9658

Department/School

Institute for Marine and Antarctic Studies

Publisher

Ecological Soc Amer

Place of publication

1707 H St Nw, Ste 400, Washington, USA, Dc, 20006-3915

Rights statement

Copyright 2019 Ecological Society of America

Repository Status

  • Open

Socio-economic Objectives

Fisheries - wild caught not elsewhere classified; Control of pests, diseases and exotic species in marine environments