eCite Digital Repository

Antarctic krill are reservoirs for distinct Southern Ocean microbial communities

Citation

Clarke, LC and Suter, L and King, R and Bissett, A and Deagle, BE, Antarctic krill are reservoirs for distinct Southern Ocean microbial communities, Frontiers in Microbiology, 9 Article 3226. ISSN 1664-302X (2019) [Refereed Article]


Preview
PDF
1Mb
  

Copyright Statement

Copyright 2019 Clarke, Suter, King, Bissett and Deagle. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

DOI: doi:10.3389/fmicb.2018.03226

Abstract

Host-associated bacterial communities have received limited attention in polar habitats, but are likely to represent distinct nutrient-rich niches compared to the surrounding environment. Antarctic krill (Euphausia superba) are a super-abundant species with a circumpolar distribution, and the krill microbiome may make a substantial contribution to marine bacterial diversity in the Southern Ocean. We used high-throughput sequencing of the bacterial 16S ribosomal RNA gene to characterize bacterial diversity in seawater and krill tissue samples from four locations south of the Kerguelen Plateau, one of the most productive regions in the Indian Sector of the Southern Ocean. Krill-associated bacterial communities were distinct from those of the surrounding seawater, with different communities inhabiting the moults, digestive tract and faecal pellets, including several phyla not detected in the surrounding seawater. Digestive tissues from many individuals contained a potential gut symbiont (order: Mycoplasmoidales) shown to improve survival on a low quality diet in other crustaceans. Antarctic krill swarms thus influence Southern Ocean microbial communities not only through top-down grazing of eukaryotic cells and release of nutrients into the water column, but also by transporting distinct microbial assemblages horizontally via migration and vertically via sinking faecal pellets and moulted exuviae. Changes to Antarctic krill demographics or distribution through fishing pressure or climate-induced range shifts will also influence the composition and dispersal of Southern Ocean microbial communities.

Item Details

Item Type:Refereed Article
Keywords:Antarctic krill, Euphausia superba, Southern Ocean, microbiome, high-throughput DNA sequencing, 16S rRNA
Research Division:Biological Sciences
Research Group:Microbiology
Research Field:Microbial Ecology
Objective Division:Animal Production and Animal Primary Products
Objective Group:Fisheries - Wild Caught
Objective Field:Wild Caught Crustaceans (excl. Rock Lobster and Prawns)
UTAS Author:Clarke, LC (Dr Laurence Clarke)
ID Code:130401
Year Published:2019
Deposited By:CRC-Antarctic Climate & Ecosystems
Deposited On:2019-01-23
Last Modified:2019-06-12
Downloads:36 View Download Statistics

Repository Staff Only: item control page