University of Tasmania
Browse
Shabala18.pdf (582.03 kB)

The role of environment in the observed Fundamental Plane of radio active galactic nuclei

Download (582.03 kB)
journal contribution
posted on 2023-05-20, 00:08 authored by Stanislav ShabalaStanislav Shabala
The optical Fundamental Plane of black hole activity relates radio continuum luminosity of active galactic nuclei (AGNs) to [OⅠⅠⅠ] luminosity and black hole mass. We examine the environments of low-redshift (𝓏 < 0.2) radio-selected AGNs, quantified through galaxy clustering, and find that halo mass provides similar mass scalings to black hole mass in the Fundamental Plane relations. AGN properties are strongly environment-dependent: massive haloes are more likely to host radiatively inefficient (low-excitation) radio AGN, as well as a higher fraction of radio luminous, extended sources. These AGN populations have different radio-optical luminosity scaling relations, and the observed mass scalings in the parent AGN sample are built up by combining populations preferentially residing in different environments. Accounting for environment-driven selection effects, the optical Fundamental Plane of supermassive black holes is likely to be mass-independent, as predicted by models.

Funding

Australian Research Council

History

Publication title

Monthly Notices of the Royal Astronomical Society

Volume

478

Issue

4

Pagination

5074-5080

ISSN

0035-8711

Department/School

School of Natural Sciences

Publisher

Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Rights statement

Copyright 2018 The Author. This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©:2018. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the physical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC