eCite Digital Repository

Individual and temporal variation in pathogen load predicts long-term impacts of an emerging infectious disease

Citation

Wells, K and Hamede, RK and Jones, ME and Hohenlohe, PA and Storfer, A and McCallum, HI, Individual and temporal variation in pathogen load predicts long-term impacts of an emerging infectious disease, Ecology, 100, (3) Article e02613. ISSN 0012-9658 (2019) [Refereed Article]


Preview
PDF
979Kb
  

Copyright Statement

Copyright 2019 by the Ecological Society of America

DOI: doi:10.1002/ecy.2613

Abstract

Emerging infectious diseases increasingly threaten wildlife populations. Most studies focus on managing short‐term epidemic properties, such as controlling early outbreaks. Predicting long‐term endemic characteristics with limited retrospective data is more challenging. We used individual‐based modelling informed by individual variation in pathogen load and transmissibility to predict long‐term impacts of a lethal, transmissible cancer on Tasmanian devil (Sarcophilus harrisii) populations. For this, we employed Approximate Bayesian Computation to identify model scenarios that best matched known epidemiological and demographic system properties derived from ten years of data after disease emergence, enabling us to forecast future system dynamics. We show that the dramatic devil population declines observed thus far are likely attributable to transient dynamics (initial dynamics after disease emergence). Only 21% of matching scenarios led to devil extinction within 100 years following devil facial tumor disease (DFTD) introduction, whereas DFTD faded out in 57% of simulations. In the remaining 22% of simulations, disease and host coexisted for at least 100 years, usually with long‐period oscillations. Our findings show that pathogen extirpation or host‐pathogen coexistence are much more likely than the DFTD‐induced devil extinction, with crucial management ramifications. Accounting for individual‐level disease progression and the long‐term outcome of devil‐DFTD interactions at the population‐level, our findings suggest that immediate management interventions are unlikely to be necessary to ensure the persistence of Tasmanian devil populations. This is because strong population declines of devils after disease emergence do not necessarily translate into long‐term population declines at equilibria. Our modelling approach is widely applicable to other host‐pathogen systems to predict disease impact beyond transient dynamics.

Item Details

Item Type:Refereed Article
Keywords:Tasmanian devil, devil facial tumour disease, wildlife disease, disease burden, long-periodicity oscillation, population viability, transmissible cancer, wildlife health
Research Division:Biological Sciences
Research Group:Ecology
Research Field:Population ecology
Objective Division:Environmental Management
Objective Group:Terrestrial systems and management
Objective Field:Terrestrial biodiversity
UTAS Author:Hamede, RK (Dr Rodrigo Hamede Ross)
UTAS Author:Jones, ME (Professor Menna Jones)
ID Code:130307
Year Published:2019
Web of Science® Times Cited:22
Deposited By:Zoology
Deposited On:2019-01-18
Last Modified:2020-07-21
Downloads:45 View Download Statistics

Repository Staff Only: item control page