University of Tasmania
Browse
130125 - Cathodoluminescence features, author version.pdf (4.15 MB)

Cathodoluminescence features, trace elements, and oxygen isotopes of quartz in unidirectional solidification textures from the Sn-mineralized Heemskirk Granite, western Tasmania

Download (4.15 MB)
journal contribution
posted on 2023-05-19, 23:50 authored by Wei HongWei Hong, David CookeDavid Cooke, Lejun ZhangLejun Zhang, Fox, N, Thompson, J
Distinctive quartz-rich unidirectional solidification textures (USTs) occur in apical carapaces of the Sn-mineralized Heemskirk Granite in western Tasmania (SE Australia). They are spatially associated with abundant tourmaline-filled orbicules and cavities that have been overprinted by widespread tourmaline-quartz veins. Multiple UST-quartz layers that are intercalated with aplitic layers, and can locally extend for hundreds of meters. Individual UST layers consist dominantly of hexagonal quartz (>95%) with minor K-feldspar, plagioclase, biotite, muscovite, and magnetite. Scanning electron microscope-cathodoluminescence (SEM-CL) reveals that the aplitic quartz is homogeneous and CL-bright with minor CL-dark patches. The bases of the UST quartz crystals are homogeneous and CL-bright with minor thin CL-dark fractures, whereas the trigonal apexes of the UST-quartz display CL-oscillatory growth zones. LA-ICP-MS analyses show that UST-quartz has lower Ti, Li, and Sn than aplitic quartz, but higher Al, Li, Na, K, Mn, Fe, Ge, Rb, and Cs concentrations. At a pressure of ca. 1.3 kbar, the Ti-in-quartz geothermometer yields temperatures of 545 ± 40 and 580 ± 20 °C for the UST and aplitic quartz, respectively. The UST-quartz has higher Al/Ti values of 5.8 to 32, and Ge/Ti values of 0.02 to 0.16, than quartz phenocrysts in aplite layers, which is consistent with crystallization from a highly evolved fluid. The O-isotopic compositions (+5.1 to +10.2‰) of UST and aplitic quartz are consistent with magmatic source circulated by minor meteoric and/or formation waters. Magnetite crystals in USTs have low Cr, V, Ni, Co, Cr, Sc, and high Ti, Al, Mn, Sn, Ga contents, and are overgrown by chlorite. These minerals are interpreted to have formed at UST-melt interface where hydrothermal fluids reacted with igneous minerals. The results show that the UST layers in the Heemskirk Granite precipitated from magmatic-hydrothermal aqueous fluid exsolved from granitic melt during emplacement into the shallow crust (6–10 km). Such UST layers are characteristics of mineralized intrusions, and therefore provide significant indications for mineral exploration.

Funding

Australian Research Council

AMIRA International Ltd

ARC C of E Industry Partner $ to be allocated

Anglo American Exploration Philippines Inc

AngloGold Ashanti Australia Limited

Australian National University

BHP Billiton Ltd

Barrick (Australia Pacific) PTY Limited

CSIRO Earth Science & Resource Engineering

Mineral Resources Tasmania

Minerals Council of Australia

Newcrest Mining Limited

Newmont Australia Ltd

Oz Minerals Australia Limited

Rio Tinto Exploration

St Barbara Limited

Teck Cominco Limited

University of Melbourne

University of Queensland

Zinifex Australia Ltd

History

Publication title

American Mineralogist

Volume

104

Pagination

100-117

ISSN

0003-004X

Department/School

School of Natural Sciences

Publisher

Mineralogical Soc Amer

Place of publication

1015 Eighteenth St, Nw Suite 601, Washington, USA, Dc, 20036

Rights statement

Copyright 2019 Mineralogical Society of America

Repository Status

  • Open

Socio-economic Objectives

Zinc ore exploration; Mineral exploration not elsewhere classified