University of Tasmania
Browse
129952 - Metagenomic analysis of fish-associated Ca. Parilichlamydiaceae reveals striking metabolic similarities to the terrestrial Chlamydiaceae.pdf (736.36 kB)

Metagenomic analysis of fish-associated Ca. Parilichlamydiaceae reveals striking metabolic similarities to the terrestrial Chlamydiaceae

Download (736.36 kB)
journal contribution
posted on 2023-05-19, 23:31 authored by Taylor-Brown, A, Pillonel, T, Greub, G, Vaughan, L, Barbara NowakBarbara Nowak, Polkinghorne, A

Chlamydiae are an example of obligate intracellular bacteria that possess highly reduced, compact genomes (1.0–3.5 Mbp), reflective of their abilities to sequester many essential nutrients from the host that they no longer need to synthesize themselves. The Chlamydiae is a phylum with a very wide host range spanning mammals, birds, fish, invertebrates, and unicellular protists. This ecological and phylogenetic diversity offers ongoing opportunities to study intracellular survival and metabolic pathways and adaptations. Of particular evolutionary significance are Chlamydiae from the recently proposed Ca. Parilichlamydiaceae, the earliest diverging clade in this phylum, species of which are found only in aquatic vertebrates. Gill extracts from three Chlamydiales-positive Australian aquaculture species (Yellowtail kingfish, Striped trumpeter, and Barramundi) were subject to DNA preparation to deplete host DNA and enrich microbial DNA, prior to metagenome sequencing. We assembled chlamydial genomes corresponding to three Ca. Parilichlamydiaceae species from gill metagenomes, and conducted functional genomics comparisons with diverse members of the phylum. This revealed highly reduced genomes more similar in size to the terrestrial Chlamydiaceae, standing in contrast to members of the Chlamydiae with a demonstrated cosmopolitan host range. We describe a reduction in genes encoding synthesis of nucleotides and amino acids, among other nutrients, and an enrichment of predicted transport proteins. Ca. Parilichlamydiaceae share 342 orthologs with other chlamydial families. We hypothesize that the genome reduction exhibited by Ca. Parilichlamydiaceae and Chlamydiaceae is an example of within-phylum convergent evolution. The factors driving these events remain to be elucidated.

History

Publication title

Genome Biology and Evolution

Volume

10

Issue

10

Pagination

2614-2628

ISSN

1759-6653

Department/School

Institute for Marine and Antarctic Studies

Publisher

Oxford Univ Press

Place of publication

United Kingdom

Rights statement

?Copyright The Author(s) 2018. Licensed under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/

Repository Status

  • Open

Socio-economic Objectives

Aquaculture fin fish (excl. tuna)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC