eCite Digital Repository

Error budget for geolocation of spectroradiometer point observations from an Unmanned Aircraft System

Citation

Gautam, D and Watson, C and Lucieer, A and Malenovsky, Z, Error budget for geolocation of spectroradiometer point observations from an Unmanned Aircraft System, Sensors, 18, (10) Article 3465. ISSN 1424-8220 (2018) [Refereed Article]


Preview
PDF
Pending copyright assessment - Request a copy
4Mb
  

DOI: doi:10.3390/s18103465

Abstract

We investigate footprint geolocation uncertainties of a spectroradiometer mounted on an unmanned aircraft system (UAS). Two microelectromechanical systems-based inertial measurement units (IMUs) and global navigation satellite system (GNSS) receivers were used to determine the footprint location and extent of the spectroradiometer. Errors originating from the on-board GNSS/IMU sensors were propagated through an aerial data georeferencing model, taking into account a range of values for the spectroradiometer field of view (FOV), integration time, UAS flight speed, above ground level (AGL) flying height, and IMU grade. The spectroradiometer under nominal operating conditions (8 FOV, 10 m AGL height, 0.6 s integration time, and 3 m/s flying speed) resulted in footprint extent of 140 cm across-track and 320 cm along-track, and a geolocation uncertainty of 11 cm. Flying height and orientation measurement accuracy had the largest influence on the geolocation uncertainty, whereas the FOV, integration time, and flying speed had the biggest impact on the size of the footprint. Furthermore, with an increase in flying height, the rate of increase in geolocation uncertainty was found highest for a low-grade IMU. To increase the footprint geolocation accuracy, we recommend reducing flying height while increasing the FOV which compensates the footprint area loss and increases the signal strength. The disadvantage of a lower flying height and a larger FOV is a higher sensitivity of the footprint size to changing distance from the target. To assist in matching the footprint size to uncertainty ratio with an appropriate spatial scale, we list the expected ratio for a range of IMU grades, FOVs and AGL heights.

Item Details

Item Type:Refereed Article
Keywords:aerial spectroscopy, UAS, UAV, spectroradiometer, footprint, geolocation, error propagation
Research Division:Engineering
Research Group:Geomatic Engineering
Research Field:Photogrammetry and Remote Sensing
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in Technology
Author:Gautam, D (Mr Deepak Gautam)
Author:Watson, C (Dr Christopher Watson)
Author:Lucieer, A (Associate Professor Arko Lucieer)
Author:Malenovsky, Z (Dr Zbynek Malenovsky)
ID Code:129039
Year Published:2018
Deposited By:Geography and Spatial Science
Deposited On:2018-11-05
Last Modified:2018-11-06
Downloads:0

Repository Staff Only: item control page