eCite Digital Repository

A computational mechanistic investigation into reduction of gold(III) complexes by amino acid glycine: a new variant for amine oxidation


Chipman, A and Gouranourimi, A and Farshadfar, K and Olding, A and Yates, BF and Ariafard, A, A computational mechanistic investigation into reduction of gold(III) complexes by amino acid glycine: a new variant for amine oxidation, Chemistry, 24, (33) pp. 8361-8368. ISSN 1521-3765 (2018) [Refereed Article]

Copyright Statement

Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

DOI: doi:10.1002/chem.201800403


Density functional theory (DFT) was utilized to explore the reduction of gold(III) complexes by the amino acid glycine (Gly). Interestingly, when the nitrogen atom of Gly coordinates to the gold(III) center, its Cα -hydrogen atom becomes so acidic that it can be easily deprotonated by a mild base like water. The deprotonation converts the amino acid into a potent reductant by which gold(III) is reduced to gold(I) with a moderate activation energy. To our knowledge, this is the first contribution suggesting that primary amines are oxidized to imines via direct a-carbon deprotonation. This finding may provide new insights into the mechanistic interpretation of amine oxidations catalyzed/mediated by a center with high cathodic reduction potential. This work also provides a rationalization behind why gold(III) complexes with amine-based polydentate ligands are reluctant to undergo a redox process. Gold(III) reduction occurs most efficiently if the Cα proton leaves in the plane of the Cα, N and Au atoms. Chelation prevents this alignment, resulting in the gold(III) complex being unreactive toward reduction. It has been experimentally found that gold(III) is capable of oxidizing Gly to glyoxylic acid (GA) as the initial product. The latter, in the presence of another gold(III) complex, has been reported to undergo oxidative decarboxylation to afford CO2 and HCOOH. This process is found to be mediated by formation of a geminal diol intermediate produced by reaction of water with the aldehyde functional group of the coordinated GA.

Item Details

Item Type:Refereed Article
Keywords: reduction of gold(III), amino acid glycine, amine oxidation, amino acid oxidation, density functional theory, mechanistic study, redox reactions, gold(III) complexes
Research Division:Chemical Sciences
Research Group:Inorganic chemistry
Research Field:Transition metal chemistry
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the chemical sciences
UTAS Author:Chipman, A (Mr Antony Chipman)
UTAS Author:Gouranourimi, A (Mr Ali Gouranourimi)
UTAS Author:Olding, A (Mr Angus Olding)
UTAS Author:Yates, BF (Professor Brian Yates)
UTAS Author:Ariafard, A (Associate Professor Alireza Ariafard)
ID Code:128290
Year Published:2018
Funding Support:Australian Research Council (DP180100904)
Web of Science® Times Cited:9
Deposited By:Chemistry
Deposited On:2018-09-12
Last Modified:2022-08-19

Repository Staff Only: item control page