eCite Digital Repository

3D printed device including disk-based solid-phase extraction for the automated speciation of iron using the multisyringe flow injection analysis technique

Citation

Calderilla, C and Maya, F and Cerda, V and Leal, LO, 3D printed device including disk-based solid-phase extraction for the automated speciation of iron using the multisyringe flow injection analysis technique, Talanta, 175 pp. 463-469. ISSN 0039-9140 (2017) [Refereed Article]

Copyright Statement

Copyright 2017 Elsevier B.V.

DOI: doi:10.1016/j.talanta.2017.07.028

Abstract

The development of advanced manufacturing techniques is crucial for the design of novel analytical tools with unprecedented features. Advanced manufacturing, also known as 3D printing, has been explored for the first time to fabricate modular devices with integrated features for disk-based automated solid-phase extraction (SPE). A modular device integrating analyte oxidation, disk-based SPE and analyte complexation has been fabricated using stereolithographic 3D printing. The 3D printed device is directly connected to flow-based analytical instrumentation, replacing typical flow networks based on discrete elements. As proof of concept, the 3D printed device was implemented in a multisyringe flow injection analysis (MSFIA) system, and applied to the fully automated speciation, SPE and spectrophotometric quantification of Fe in water samples. The obtained limit of detection for total Fe determination was 7 ng, with a dynamic linear range from 22 ng to 2400 ng Fe (3 mL sample). An intra-day RSD of 4% (n = 12) and an inter-day RSD of 4.3% (n = 5, 3 mL sample, different day with a different disk), were obtained. Incorporation of integrated 3D printed devices with automated flow-based techniques showed improved sensitivity (85% increase on the measured peak height for the determination of total Fe) in comparison with analogous flow manifolds built from conventional tubing and connectors. Our work represents a step forward towards the improved reproducibility in the fabrication of manifolds for flow-based automated methods of analysis, which is especially relevant in the implementation of interlaboratory analysis.

Item Details

Item Type:Refereed Article
Keywords:3D printing, flow analysis, solid-phase extraction, multisyringe flow injection analysis, automation, water analysis, iron determination
Research Division:Chemical Sciences
Research Group:Analytical chemistry
Research Field:Flow analysis
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the chemical sciences
UTAS Author:Maya, F (Mr Fernando Maya Alejandro)
ID Code:127827
Year Published:2017
Web of Science® Times Cited:29
Deposited By:Chemistry
Deposited On:2018-08-19
Last Modified:2018-09-11
Downloads:0

Repository Staff Only: item control page