University of Tasmania
Browse

File(s) under permanent embargo

Simulation of ferrofluid heat dissipation effect on natural convection at an inclined cavity filled with kerosene/cobalt utilizing the Lattice Boltzmann method

journal contribution
posted on 2023-05-19, 20:19 authored by Gholamreza KefayatiGholamreza Kefayati
In this article, heat the dissipation effect of a ferrofluid on natural convection flow in an inclined cavity at the presence of an external magnetic source has been analyzed with the lattice Boltzmann method (LBM). The cavity is filled with the carrier fluid of kerosene and nanoscale ferromagnetic particle of cobalt. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of carrier fluid, Ra = 103-105, the volumetric fraction of nanoscale ferromagnetic particle between 0 and 4%, and inclined angles (θ = 0°, 30°, 60°, 90°, and 120°) is the size of the nanoscale ferromagnetic particle is fixed at 45 nm. Results show that the heat transfer decreases by the increment of the nanoscale ferromagnetic particle volume fraction for various Rayleigh numbers and inclined angles. The external magnetic source influences the nanoscale ferromagnetic particle at Ra = 104more than other Raleigh numbers, as the least values were observed at Ra = 103. Just as the least value of heat transfer is obtained at the inclined angle of θ = 90° for multifarious Rayleigh numbers in the absence of nanoscale ferromagnetic particle of cobalt, so the least effect of the nanoscale ferromagnetic particle at Ra = 103and 105is perceived for it. Generally, the effective situation of heat dissipation ferrofluid is found at the inclined angle of θ = 0°among the studied inclined angles. © 2014 Copyright Taylor and Francis Group, LLC.

History

Publication title

Numerical Heat Transfer Part A

Volume

65

Issue

6

Pagination

509-530

ISSN

1040-7782

Department/School

School of Engineering

Publisher

Taylor & Francis Inc

Place of publication

USA

Rights statement

Copyright 2014 Taylor & Francis Group, LLC

Repository Status

  • Restricted

Socio-economic Objectives

Energy transformation not elsewhere classified

Usage metrics

    University Of Tasmania

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC