eCite Digital Repository

Simulation of ferrofluid heat dissipation effect on natural convection at an inclined cavity filled with kerosene/cobalt utilizing the Lattice Boltzmann method

Citation

Kefayati, GHR, Simulation of ferrofluid heat dissipation effect on natural convection at an inclined cavity filled with kerosene/cobalt utilizing the Lattice Boltzmann method, Numerical Heat Transfer Part A, 65, (6) pp. 509-530. ISSN 1040-7782 (2014) [Refereed Article]

Copyright Statement

Copyright 2014 Taylor & Francis Group, LLC

DOI: doi:10.1080/10407782.2013.836022

Abstract

In this article, heat the dissipation effect of a ferrofluid on natural convection flow in an inclined cavity at the presence of an external magnetic source has been analyzed with the lattice Boltzmann method (LBM). The cavity is filled with the carrier fluid of kerosene and nanoscale ferromagnetic particle of cobalt. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of carrier fluid, Ra = 103-105, the volumetric fraction of nanoscale ferromagnetic particle between 0 and 4%, and inclined angles (θ = 0°, 30°, 60°, 90°, and 120°) is the size of the nanoscale ferromagnetic particle is fixed at 45 nm. Results show that the heat transfer decreases by the increment of the nanoscale ferromagnetic particle volume fraction for various Rayleigh numbers and inclined angles. The external magnetic source influences the nanoscale ferromagnetic particle at Ra = 104more than other Raleigh numbers, as the least values were observed at Ra = 103. Just as the least value of heat transfer is obtained at the inclined angle of θ = 90° for multifarious Rayleigh numbers in the absence of nanoscale ferromagnetic particle of cobalt, so the least effect of the nanoscale ferromagnetic particle at Ra = 103and 105is perceived for it. Generally, the effective situation of heat dissipation ferrofluid is found at the inclined angle of θ = 0°among the studied inclined angles. © 2014 Copyright Taylor and Francis Group, LLC.

Item Details

Item Type:Refereed Article
Keywords:FERROFLUID
Research Division:Engineering
Research Group:Interdisciplinary Engineering
Research Field:Heat and Mass Transfer Operations
Objective Division:Energy
Objective Group:Energy Transformation
Objective Field:Energy Transformation not elsewhere classified
UTAS Author:Kefayati, GHR (Dr Gholamreza Kefayati)
ID Code:127728
Year Published:2014
Web of Science® Times Cited:53
Deposited By:Engineering
Deposited On:2018-08-10
Last Modified:2018-09-12
Downloads:0

Repository Staff Only: item control page