eCite Digital Repository
Simulation of natural convection and entropy generation of non-Newtonian nanofluid in an inclined cavity using Buongiorno's mathematical model (Part II, entropy generation)
Citation
Kefayati, GHR and Sidik, NAC, Simulation of natural convection and entropy generation of non-Newtonian nanofluid in an inclined cavity using Buongiorno's mathematical model (Part II, entropy generation), Powder Technology, 305 pp. 679-703. ISSN 0032-5910 (2017) [Refereed Article]
Copyright Statement
Copyright 2016 Elsevier B.V.
DOI: doi:10.1016/j.powtec.2016.10.077
Abstract
In this paper, entropy generation of associated with the natural convection of non-Newtonian nanofluid, using the Buongiorno's mathematical model in an inclined cavity has been analyzed by Finite Difference Lattice Boltzmann method (FDLBM). The cavity is filled with nanofluid which the mixture shows shear-thinning behavior. This study has been performed for the certain pertinent parameters of Rayleigh number (Ra = 104 and 105), inclined angle (θ = 0°,40°,80°,120°), buoyancy ratio number (Nr = 0.1, 1, and 4), power-law index (n = 0.4 − 1), Lewis number (Le = 1, 5, and 10), Thermophoresis parameter (Nt = 0.1, 0.5, 1), and Brownian motion parameter (Nb = 0.1, 1, 5). The Prandtl number is fixed at Pr = 1. The Results indicate that the augmentation of the power-law index enhances various entropy generations in different Rayleigh numbers and inclined angles. The lowest total entropy generation was observed in the inclined angle of θ = 0° in different Rayleigh numbers. In addition, the highest values of Bejan number was found in the inclined angle of θ = 0° in various Rayleigh numbers. The enhancement of the Lewis number provokes the total irreversibility to rise. Further, the total entropy generation increases as the buoyancy ratio number augments. It was shown that the increase in the Brownian motion and Thermophoresis parameters enhance the total irreversibility.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | Entropy generation, Non-Newtonian nanofluid, Natural convection, Buongiorno model, FDLBM |
Research Division: | Engineering |
Research Group: | Fluid mechanics and thermal engineering |
Research Field: | Experimental methods in fluid flow, heat and mass transfer |
Objective Division: | Energy |
Objective Group: | Energy transformation |
Objective Field: | Energy transformation not elsewhere classified |
UTAS Author: | Kefayati, GHR (Dr Gholamreza Kefayati) |
ID Code: | 127658 |
Year Published: | 2017 |
Web of Science® Times Cited: | 58 |
Deposited By: | Engineering |
Deposited On: | 2018-08-08 |
Last Modified: | 2018-09-11 |
Downloads: | 0 |
Repository Staff Only: item control page