eCite Digital Repository

Enhanced proliferation of pancreatic acinar cells in MRL/MpJ mice is driven by severe acinar injury but independent of infammation


Bombardo, M and Malagola, E and Chen, R and Carta, A and Seleznik, GM and Hills, AP and Graf, R and Sonda, S, Enhanced proliferation of pancreatic acinar cells in MRL/MpJ mice is driven by severe acinar injury but independent of infammation, Scientific Reports, 8 Article 9391. ISSN 2045-2322 (2018) [Refereed Article]


Copyright Statement

Copyright 2018 The Authors Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

DOI: doi:10.1038/s41598-018-27422-0


Adult pancreatic acinar cells have the ability to re-enter the cell cycle and proliferate upon injury or tissue loss. Despite this mitotic ability, the extent of acinar proliferation is often limited and unable to completely regenerate the injured tissue or restore the initial volume of the organ, thus leading to pancreatic dysfunction. Identifying molecular determinants of enhanced proliferation is critical to overcome this issue. In this study, we discovered that Murphy Roths Large (MRL/MpJ) mice can be exploited to identify molecular effectors promoting acinar proliferation upon injury, with the ultimate goal to develop therapeutic regimens to boost pancreatic regeneration. Our results show that, upon cerulein-induced acinar injury, cell proliferation was enhanced and cell cycle components up-regulated in the pancreas of MRL/MpJ mice compared to the control strain C57BL/6. Initial damage of acinar cells was exacerbated in these mice, manifested by increased serum levels of pancreatic enzymes, intra-pancreatic trypsinogen activation and acinar cell apoptosis. In addition, MRL/MpJ pancreata presented enhanced inflammation, de-differentiation of acinar cells and acinar-to-ductal metaplasia. Manipulation of inflammatory levels and mitogenic stimulation with the thyroid hormone 5,3-L-tri-iodothyronine revealed that factors derived from initial acinar injury rather than inflammatory injury promote the replicative advantage in MRL/MpJ mice.

Item Details

Item Type:Refereed Article
Keywords:pancreatitis, mouse models, organ regeneration
Research Division:Biological Sciences
Research Group:Biochemistry and cell biology
Research Field:Cell development, proliferation and death
Objective Division:Health
Objective Group:Clinical health
Objective Field:Clinical health not elsewhere classified
UTAS Author:Hills, AP (Professor Andrew Hills)
UTAS Author:Sonda, S (Dr Sabrina Sonda)
ID Code:127545
Year Published:2018
Web of Science® Times Cited:1
Deposited By:Health Sciences
Deposited On:2018-08-02
Last Modified:2019-02-13
Downloads:84 View Download Statistics

Repository Staff Only: item control page