eCite Digital Repository
Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching
Citation
Stuart-Smith, RD and Brown, CJ and Ceccarelli, DM and Edgar, GJ, Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching, Nature, 560, (7716) pp. 92-96. ISSN 0028-0836 (2018) [Refereed Article]
Copyright Statement
Copyright 2018 Springer Nature Limited
Official URL: https://www.nature.com/articles/s41586-018-0359-9
DOI: doi:10.1038/s41586-018-0359-9
Abstract
Global warming is markedly changing diverse coral reef ecosystems through an increasing frequency and magnitude of mass bleaching events. How local impacts scale up across affected regions depends on numerous factors, including patchiness in coral mortality, metabolic effects of extreme temperatures on populations of reef-dwelling species and interactions between taxa. Here we use data from before and after the 2016 mass bleaching event to evaluate ecological changes in corals, algae, fishes and mobile invertebrates at 186 sites along the full latitudinal span of the Great Barrier Reef and western Coral Sea. One year after the bleaching event, reductions in live coral cover of up to 51% were observed on surveyed reefs that experienced extreme temperatures; however, regional patterns of coral mortality were patchy. Consistent declines in coral-feeding fishes were evident at the most heavily affected reefs, whereas few other short-term responses of reef fishes and invertebrates could be attributed directly to changes in coral cover. Nevertheless, substantial region-wide ecological changes occurred that were mostly independent of coral loss, and instead appeared to be linked directly to sea temperatures. Community-wide trophic restructuring was evident, with weakening of strong pre-existing latitudinal gradients in the diversity of fishes, invertebrates and their functional groups. In particular, fishes that scrape algae from reef surfaces, which are considered to be important for recovery after bleaching, declined on northern reefs, whereas other herbivorous groups increased on southern reefs. The full impact of the 2016 bleaching event may not be realized until dead corals erode during the next decade. However, our short-term observations suggest that the recovery processes, and the ultimate scale of impact, are affected by functional changes in communities, which in turn depend on the thermal affinities of local reef-associated fauna. Such changes will vary geographically, and may be particularly acute at locations where many fishes and invertebrates are close to their thermal distribution limits.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | Reef Life Survey, long-term monitoring, reef fish, climate change, citizen science |
Research Division: | Biological Sciences |
Research Group: | Ecology |
Research Field: | Marine and estuarine ecology (incl. marine ichthyology) |
Objective Division: | Environmental Policy, Climate Change and Natural Hazards |
Objective Group: | Adaptation to climate change |
Objective Field: | Ecosystem adaptation to climate change |
UTAS Author: | Stuart-Smith, RD (Dr Rick Stuart-Smith) |
UTAS Author: | Edgar, GJ (Professor Graham Edgar) |
ID Code: | 127543 |
Year Published: | 2018 |
Web of Science® Times Cited: | 144 |
Deposited By: | Ecology and Biodiversity |
Deposited On: | 2018-08-02 |
Last Modified: | 2019-07-30 |
Downloads: | 0 |
Repository Staff Only: item control page