eCite Digital Repository

Common mode error in Antarctic GPS coordinate time-series on its effect on bedrock-uplift estimates

Citation

Liu, B and King, M and Dai, W, Common mode error in Antarctic GPS coordinate time-series on its effect on bedrock-uplift estimates, Geophysical Journal International, 214, (3) pp. 1652-1664. ISSN 0956-540X (2018) [Refereed Article]

Copyright Statement

Copyright 2018 The Authors

DOI: doi:10.1093/gji/ggy217

Abstract

Spatially correlated common mode error (CME) always exists in regional, or-larger, global positioning system (GPS) networks. We applied independent component analysis (ICA) to GPS vertical coordinate time-series in Antarctica from 2010 to 2014 and made a comparison with the principal component analysis (PCA). Using PCA/ICA, the time-series can be decomposed into a set of temporal components and their spatial responses. We assume the components with common spatial responses are CME. An average reduction of ∼40 per cent about the root-mean-square (RMS) values was achieved in both PCA and ICA filtering. However, the common mode components obtained from the two approaches have different spatial and temporal features. ICA time-series present interesting correlations with modelled atmospheric and non-tidal ocean loading displacements. A white noise plus power law (PL) noise model was adopted in the GPS velocity estimation using maximum likelihood estimation analysis, with ∼55 per cent reduction of the velocity uncertainties after filtering using ICA. Meanwhile, spatiotemporal filtering reduces the amplitude of PL and periodic terms in the GPS time-series. Finally, we compare the GPS uplift velocities, after correction for elastic effects, with recent models of glacial isostatic adjustment (GIA). The agreements of the GPS observed velocities and four GIA models are generally improved after the spatiotemporal filtering, with a mean reduction of ∼0.9 mm yr−1 of the weighted RMS values, possibly allowing for more confident separation of various GIA model predictions.

Item Details

Item Type:Refereed Article
Keywords:glacial isostatic adjustment, GPS, common mode error, vertical velocity
Research Division:Engineering
Research Group:Geomatic Engineering
Research Field:Geodesy
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Earth Sciences
UTAS Author:Liu, B (Mr Bin Liu)
UTAS Author:King, M (Professor Matt King)
ID Code:127362
Year Published:2018
Funding Support:Australian Research Council (FT110100207)
Web of Science® Times Cited:4
Deposited By:Geography and Spatial Science
Deposited On:2018-07-23
Last Modified:2019-03-15
Downloads:0

Repository Staff Only: item control page