eCite Digital Repository

Fluid-structure interaction simulation of slam-induced bending in large high-speed wave-piercing catamarans


McVicar, J and Lavroff, J and Davis, MR and Thomas, G, Fluid-structure interaction simulation of slam-induced bending in large high-speed wave-piercing catamarans, Journal of Fluids and Structures, 82 pp. 35-58. ISSN 0889-9746 (2018) [Refereed Article]

Copyright Statement

Copyright 2018 Elsevier Ltd.

DOI: doi:10.1016/j.jfluidstructs.2018.06.009


A ship in waves may experience a water impact event known as a slam. In this paper, slam-induced bending of wave-piercing catamarans in head seas is predicted by way of fluid–structure interaction simulations. The flow field during slamming of a wave-piercing catamaran is highly non-linear and cannot be accurately captured using potential flow methods as a result of the interactions between the flow fields produced by water entry of the separate demihulls and centre bow. Thus, the Reynolds-Averaged Navier–Stokes (RANS) equations are solved for rigid body motion of a vessel at model-scale. Verification and validation is conducted using model-scale data from a Hydroelastic Segmented Model (HSM). One-way and two-way interactions are computed considering vibration of the hull girder. In the case of one-way interactions, the computed fluid loads affect the structure, but the structural response does not affect the fluid domain solution whereas for the two-way interactions the structural response affects the fluid solution. A new method for capturing the non-linear time variation in added mass is developed and deemed necessary when computing one-way interactions, primarily as a result of the large changes in forward wetted area present for a wave-piercing catamaran. It is shown that two-way interaction simulation is not needed for predicting the slam induced hull girder loads. One-way interaction simulation can therefore be used allowing reduced computational effort.

Item Details

Item Type:Refereed Article
Keywords:Slamming, bending, CFD, fluid structure interaction, model tests, computer simulation
Research Division:Engineering
Research Group:Mechanical engineering
Research Field:Mechanical engineering not elsewhere classified
Objective Division:Transport
Objective Group:Water transport
Objective Field:Domestic passenger water transport (e.g. ferries)
UTAS Author:Lavroff, J (Dr Jason Ali-Lavroff)
UTAS Author:Davis, MR (Professor Michael Davis)
ID Code:127054
Year Published:2018
Web of Science® Times Cited:22
Deposited By:Engineering
Deposited On:2018-07-09
Last Modified:2019-02-26

Repository Staff Only: item control page