University of Tasmania
Browse

File(s) under permanent embargo

Distinguishing between convergent evolution and violation of the molecular clock for three taxa

journal contribution
posted on 2023-05-19, 19:13 authored by Jonathan MitchellJonathan Mitchell, Jeremy SumnerJeremy Sumner, Barbara HollandBarbara Holland
We give a non-technical introduction to convergence–divergence models, a new modeling approach for phylogenetic data that allows for the usual divergence of lineages after lineage-splitting but also allows for taxa to converge, i.e. become more similar over time. By examining the 3-taxon case in some detail, we illustrate that phylogeneticists have been “spoiled” in the sense of not having to think about the structural parameters in their models by virtue of the strong assumption that evolution is tree-like. We show that there are not always good statistical reasons to prefer the usual class of tree-like models over more general convergence–divergence models. Specifically, we show many 3-taxon data sets can be equally well explained by supposing violation of the molecular clock due to change in the rate of evolution along different edges, or by keeping the assumption of a constant rate of evolution but instead assuming that evolution is not a purely divergent process. Given the abundance of evidence that evolution is not strictly tree-like, our discussion is an illustration that as phylogeneticists we need to think clearly about the structural form of the models we use. For cases with four taxa, we show that there will be far greater ability to distinguish models with convergence from non-clock-like tree models.

Funding

Australian Research Council

History

Publication title

Systematic Biology

Volume

67

Issue

5

Pagination

905-915

ISSN

1063-5157

Department/School

School of Natural Sciences

Publisher

Taylor & Francis Inc

Place of publication

325 Chestnut St, Suite 800, Philadelphia, USA, Pa, 19106

Rights statement

Copyright 2018 The Authors

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC