University of Tasmania
Browse

File(s) under permanent embargo

An experimental study of cavity flow over a 2-D wall-mounted fence in a variable boundary layer

journal contribution
posted on 2023-05-19, 19:08 authored by Luka BarbacaLuka Barbaca, Bryce PearceBryce Pearce, Paul BrandnerPaul Brandner
Ventilated and natural cavity flow over a 2-D wall-mounted fence immersed in a boundary layer is experimentally investigated in a cavitation tunnel. Cavity topology, upstream wall pressure distribution and the resulting hydrodynamic forces were determined as a function of ventilation rate, fence immersion in the oncoming boundary layer and free-stream conditions. Cavities exhibit a typical re-entrant jet behaviour, which is the primary mechanism of air/vapour entrainment into the main flow. Some entrainment is also observed via the turbulent break-up at the cavity surface, the intensity of which increases with deeper immersion of the fence within the wall boundary layer. A similar cavity topology, apart from some difference in the wake, is observed for ventilated and natural cavities at the same flow conditions. This similarity is also present in the relations between all other parameters investigated. It was found that with a decrease in cavitation number lift (i.e. force normal to the wall) increases and drag (i.e. force normal to the fence) decreases, resulting in an increased hydrodynamic efficiency of the wall/fence system. With an increase in fence immersion in the boundary layer, lift and drag both increase at the same rate, resulting in a constant lift-to-drag ratio.

History

Publication title

International Journal of Multiphase Flow

Volume

105

Pagination

234-249

ISSN

0301-9322

Department/School

Australian Maritime College

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Rights statement

Copyright 2018 Elsevier Ltd.

Repository Status

  • Restricted

Socio-economic Objectives

Nautical equipment

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC