University of Tasmania
Browse

File(s) under permanent embargo

Epothilone D inhibits microglia-mediated spread of alpha-synuclein aggregates

journal contribution
posted on 2023-05-19, 19:02 authored by Valdinocci, D, Grant, GD, Tracey DicksonTracey Dickson, Pountney, DL
Multiple System Atrophy (MSA) is a progressive neurodegenerative disease characterized by chronic neuroinflammation and widespread α-synuclein (α-syn) cytoplasmic inclusions. Neuroinflammation associated with microglial cells is typically located in brain regions with α-syn deposits. The potential link between microglial cell migration and the transport of pathological α-syn protein in MSA was investigated. Qualitative analysis via immunofluorescence of MSA cases (n = 4) revealed microglial cells bearing α-syn inclusions distal from oligodendrocytes bearing α-syn cytoplasmic inclusions, as well as close interactions between microglia and oligodendrocytes bearing α-syn, suggestive of a potential transfer mechanism between microglia and α-syn bearing cells in MSA and the possibility of microglia acting as a mobile vehicle to spread α-syn between anatomically connected brain regions. Further In vitro experiments using microglial-like differentiated THP-1 cells were conducted to investigate if microglial cells could act as potential transporters of α-syn. Monomeric or aggregated α-syn was immobilized at the centre of glass coverslips and treated with either cell free medium, undifferentiated THP-1 cells or microglial-like phorbol-12-myristate-13-acetate differentiated THP-1 cells (48 h; n = 3). A significant difference in residual immobilized α-syn density was observed between cell free controls and differentiated (p = 0.016) as well as undifferentiated and differentiated THP-1 cells (p = 0.032) when analysed by quantitative immunofluorescence. Furthermore, a significantly greater proportion of differentiated cells were observed bearing α-syn aggregates distal from the immobilized protein than their non-differentiated counterparts (p = 0.025). Similar results were observed with Highly Aggressive Proliferating Immortalised (HAPI) microglial cells, with cells exposed to aggregated α-syn yielding lower residual immobilized α-syn (p = 0.004) and a higher proportion of α-syn positive distal cells (p = 0.001) than cells exposed to monomeric α-syn. Co-treatment of THP-1 groups with the tubulin depolymerisation inhibitor, Epothilone D (EpoD; 10 nM), was conducted to investigate if inhibition of microtubule activity had an effect on cell migration and residual immobilized α-syn density. There was a significant increase in both residual immobilized α-syn between EpoD treated and non-treated differentiated cells exposed to monomeric (p = 0.037) and aggregated (p = 0.018) α-syn, but not with undifferentiated cells. Differentiated THP-1 cells exposed to immobilized aggregated α-syn showed a significant difference in the proportion of distal aggregate bearing cells between EpoD treated and untreated (p = 0.027). The results suggest microglia could play a role in α-syn transport in MSA, a role which could potentially be inhibited therapeutically by EpoD.

History

Publication title

Molecular and Cellular Neuroscience

Volume

89

Pagination

80-94

ISSN

1044-7431

Department/School

College Office - College of Health and Medicine

Publisher

Academic Press Inc Elsevier Science

Place of publication

525 B St, Ste 1900, San Diego, USA, Ca, 92101-4495

Rights statement

© 2018 Elsevier Inc. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC