University of Tasmania
Browse

File(s) under permanent embargo

Developmental plasticity in reptiles: insights from temperature-dependent gene expression in wall lizard embryos

journal contribution
posted on 2023-05-19, 18:15 authored by Feiner, N, Rago, A, Geoffrey WhileGeoffrey While, Uller, T
Many features of the development of reptiles are affected by temperature, but very little is known about how incubation temperature affects gene expression. Here, we provide a detailed case study of gene expression profiles in common wall lizard (Podarcis muralis) embryos developing at stressfully low (15°C) versus benign (24°CC) temperature. For maximum comparability between the two temperature regimes, we selected a precise developmental stage early in embryogenesis defined by the number of somites. We used a split-clutch design and lizards from four different populations to evaluate the robustness of temperature-responsive gene expression profiles. Embryos incubated at stressfully low incubation temperature expressed on average 20% less total RNA than those incubated at benign temperatures, presumably reflecting lower rates of transcription at cool temperature. After normalizing for differences in total amounts of input RNA, we find that approximately 50% of all transcripts show significant expression differences between the two incubation temperatures. Transcripts with the most extreme changes in expression profiles are associated with transcriptional and translational regulation and chromatin remodeling, suggesting possible epigenetic mechanisms underlying acclimation of early embryos to cool temperature. We discuss our findings in light of current advances in the use of transcriptomic data to study how individuals acclimatize and populations adapt to thermal stress.

History

Publication title

Journal of Experimental Zoology

Pagination

1-11

ISSN

1932-5223

Department/School

School of Natural Sciences

Publisher

John Wiley & Sons, Inc.

Place of publication

United States

Rights statement

Copyright 2018 Wiley Periodicals, Inc.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC