eCite Digital Repository

Observing APOD with the AuScope VLBI array

Citation

Hellerschmied, A and McCallum, L and McCallum, J and Sun, J and Bohm, J and Cao, J, Observing APOD with the AuScope VLBI array, Sensors, 18, (5) Article 1587. ISSN 1424-8220 (2018) [Refereed Article]


Preview
PDF
9Mb
  

Copyright Statement

Copyright 2018 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

DOI: doi:10.3390/s18051587

Abstract

The possibility to observe satellites with the geodetic Very Long Baseline Interferometry (VLBI) technique is vividly discussed in the geodetic community, particularly with regard to future co-location satellite missions. The Chinese APOD-A nano satellite can be considered as a first prototype—suitable for practical observation tests—combining the techniques Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS) and VLBI on a single platform in a Low Earth Orbit (LEO). Unfortunately, it has hardly been observed by VLBI, so major studies towards actual frame ties could not be performed. The main reason for the lack of observations was that VLBI observations of satellites are non-standard, and suitable observing strategies were not in place for this mission. This work now presents the first serious attempt to observe the satellite with a VLBI network over multiple passes. We introduce a series of experiments with the AuScope geodetic VLBI array which were carried out in November 2016, and describe all steps integrated in the established process chain: the experiment design and observation planning, the antenna tracking and control scheme, correlation and derivation of baseline-delays, and the data analysis yielding delay residuals on the level of 10 ns. The developed procedure chain can now serve as reference for future experiments, hopefully enabling the global VLBI network to be prepared for the next co-location satellite mission.

Item Details

Item Type:Refereed Article
Keywords:VLBI, space ties, APOD, AuScope, satellite tracking
Research Division:Engineering
Research Group:Geomatic Engineering
Research Field:Geodesy
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Physical Sciences
UTAS Author:McCallum, L (Dr Lucia McCallum)
UTAS Author:McCallum, J (Dr Jamie McCallum)
ID Code:125958
Year Published:2018
Web of Science® Times Cited:6
Deposited By:Mathematics and Physics
Deposited On:2018-05-17
Last Modified:2019-02-27
Downloads:47 View Download Statistics

Repository Staff Only: item control page