eCite Digital Repository

Pulses of plagioclase-laden magmas and stratigraphic evolution in the upper zone of the Bushveld Complex, South Africa


Yuan, Q and Namur, O and Fischer, LA and Roberts, RJ and Lu, X and Charlier, B, Pulses of plagioclase-laden magmas and stratigraphic evolution in the upper zone of the Bushveld Complex, South Africa, Journal of Petrology, 58, (8) pp. 1619-1644. ISSN 0022-3530 (2017) [Refereed Article]

Copyright Statement

Copyright 2017 The Authors

DOI: doi:10.1093/petrology/egx067


Cumulate rocks of the Upper Main Zone and Upper Zone (UUMZ) of the Bushveld Complex, South Africa, contain the world's major resources of Fe-Ti-Vá▒, hosted in Ti-magnetite and apatite, and are commonly considered as having crystallized from the last major injection of magma into the magma chamber. In this study, we present the petrography, modal proportions, whole-rock major element chemistry (260 samples), electron microprobe data (∼10 000 analyses for plagioclase, olivine, and pyroxene), and compiled analyses of Cr in magnetite (239 samples) for the UUMZ sampled over 2.1ákm of the Bierkraal drill cores in the western limb of the Complex. The UUMZ section exhibits a broad normal fractionation trend upwards, but a series of reversals to more primitive anorthite contents in plagioclase, Mg# in pyroxenes and olivine, Cr in whole-rocks and Cr in magnetite separates are observed, accompanied by the appearance or disappearance of various minerals. Anorthosite or leucogabbro layers are closely linked to these reversals; the reversals in Aná% of plagioclase are used as boundaries to divide the UUMZ into 18 cycles. These cycles are interpreted as indications of magma chamber replenishment by plagioclase-laden magmas (up to 20ávol.á% plagioclase) and are also marked by spikes in Cr content. In addition, abundant Fe-Ti oxide-bearing plagioclase-rich rocks are identified in the lower half of the UUMZ. These have crystallized from a hybrid melt produced by the mixing of a new plagioclase-bearing magma batch and the resident magma. Further crystallization of this hybrid liquid may lead to the formation of magnetite layers in the lower part of the UUMZ. The Bushveld UUMZ therefore grew by multiple emplacements of crystal-laden magmas coming from deep-seated chambers. Slow cooling in a shallow chamber explains the systematic bottom-up compositional evolution in the cumulate pile within individual cycles. The residual melt reached silicate liquid immiscibility soon after the saturation of apatite. Thereafter, segregation of conjugate Fe-rich and Si-rich melts and crystallization of the paired melts produces cumulates with a smooth upward decrease in Fe-Ti oxides, whereas plagioclase mode increases in each apatite-bearing cycle. A comparison of systematic geochemical analyses and a detailed lithological stratigraphy between the Bushveld limbs demonstrates the possible connectivity between the western and eastern Upper Zone but indicates notable differences from the Bellevue section of the northern limb.

Item Details

Item Type:Refereed Article
Keywords:layered intrusion, cumulate, cryptic layering, replenishment, anorthosite, magnetite layer, nelsonite, crystal mush, Bushveld Complex
Research Division:Earth Sciences
Research Group:Geology
Research Field:Igneous and metamorphic petrology
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the earth sciences
UTAS Author:Fischer, LA (Mr Lennart Fischer)
ID Code:125426
Year Published:2017
Web of Science® Times Cited:31
Deposited By:Earth Sciences
Deposited On:2018-04-17
Last Modified:2018-06-22

Repository Staff Only: item control page