eCite Digital Repository

Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

Citation

Rolison, JM and Stirling, CH and Middag, R and Gault-Ringold, M and George, E and Rijkenberg, MJA, Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue, Earth and Planetary Science Letters, 488 pp. 1-13. ISSN 0012-821X (2018) [Refereed Article]

Copyright Statement

Copyright 2018 Elsevier B.V.

DOI: doi:10.1016/j.epsl.2018.02.006

Abstract

The chemical response of the Precambrian oceans to rising atmospheric O2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shift in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the ‘Great Oxidation Event’ around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise in atmospheric oxygen, contrary to other interpretations based on iron isotope systematics.

Item Details

Item Type:Refereed Article
Keywords:iron isotope fractionation, paleo-redox proxy, pyrite formation, redox-sensitive trace metal, Black Sea, Great Oxidation Event
Research Division:Earth Sciences
Research Group:Oceanography
Research Field:Chemical Oceanography
Objective Division:Environment
Objective Group:Physical and Chemical Conditions of Water
Objective Field:Physical and Chemical Conditions of Water in Marine Environments
UTAS Author:Gault-Ringold, M (Dr Melanie East)
ID Code:125205
Year Published:2018
Web of Science® Times Cited:4
Deposited By:CRC-Antarctic Climate & Ecosystems
Deposited On:2018-04-06
Last Modified:2018-12-13
Downloads:0

Repository Staff Only: item control page