eCite Digital Repository

Large Paleozoic and Mesozoic porphyry deposits in the Central Asian Orogenic Belt: geodynamic setting, magmatic sources, and genetic models

Citation

Shen, P and Pan, H and Hattori, K and Cooke, DR and Seitmuratova, E, Large Paleozoic and Mesozoic porphyry deposits in the Central Asian Orogenic Belt: geodynamic setting, magmatic sources, and genetic models, Gondwana Research, 58 pp. 161-194. ISSN 1342-937X (2018) [Refereed Article]

Copyright Statement

Copyright 2018 International Association for Gondwana Research

DOI: doi:10.1016/j.gr.2018.01.010

Abstract

The Central Asian Orogenic Belt (CAOB) or Altaids contains several large porphyry Cu(-Au-Mo) and Au(-Cu) deposits. These deposits are genetically associated with equigranular and porphyritic tonalite, granodiorite and diorite. Secondary ion mass spectrometry (SIMS) zircon UPb dating indicates that these hydrous, mineralized calc-alkaline intrusions were emplaced from the Cambrian to the Triassic.

Trace element geochemistry and SrNdHfO isotopic compositions show two different signatures of the mineralizing intrusions. Mineralizing intrusions at Bozshakol, Aktogai, Nurkazghan, and Tuwu-Yandong have depleted SrNdHfO isotopic compositions (Isr = 0.7033 to 0.7047, εNd(t) = +3.6 to +6.6, εHf(t) = +9.6 to +16.4, δ18O = 6.8 to 4.7) and variable high Nb/Ta (11.6 to 16.4) ratios, implying a dominantly juvenile lower crustal source with mantle involvement at Bozshakol and Aktogai and sedimentary rocks contamination at Nurkazghan. Mineralizing intrusions at Erdenet, Koksai and Yubileinoe have slightly depleted SrNdHf isotopic compositions (Isr = 0.70403 to 0.7043, εNd(t) = +2.9 to +3.8, εHf(t) = +6.6 to +11.6) and low δ18O (3.1 to 2.5), slightly enriched SrNdHfO isotopic compositions (Isr = 0.7044 to 0.7049, εNd(t) = +0.04 to +1.9, εHf(t) = 3.2 to 12.0, δ18O = 5.2 to 6.4) and enriched SrNd isotopic compositions (Isr = 0.7041 to 0.7081, εNd(t) = −2.6 to −2.9), respectively, as well as intermediate to low Nb/Ta ratios (13.48.1), implying a juvenile lower crustal source with wall rocks contamination at Erdenet and ancient crust contamination at Koksai and Yubileinoe. Therefore, Juvenile sources played a significant role in the generation of fertile magmas for porphyry-Cu and -Au style mineralization in the CAOB.

Mineralizing intrusions include the adakitic, transitional, and normal arc rocks. Mineralizing intrusions in some porphyry Cu(-Mo) deposits (e.g., Aktogai, Erdenet) have adakitic affinities based on their high Sr/Y (30193) and La/Yb (1749) ratios coupled with low Y (1.510.3 ppm) and Yb (0.21.0 ppm) concentrations. Variable high Sr/Y, Sm/Yb and La/Yb ratios suggest that the lower crustal source is probably a garnet-bearing amphibolite. These adakitic rocks were formed by partial melting of thickened lower crust at depths of N40 km. Mineralizing intrusions at most porphyry Cu(-Au) and Au deposits, including Bozshakol, Nurkazghan, Koksai, Tuwu-Yandong, and Yubileinoe, have variable intermediate Sr/Y (1384) and La/Yb (723) ratios, intermediate to low Y (4.716.2 ppm) and Yb (0.51.3 ppm) concentrations, showing a transitional signature between adakitic and normal arc rocks. Variable moderate Sr/Y, Sm/Yb and La/Yb ratios suggest that the lower crustal source is probably a hydrous amphibole. These transitional rocks were formed by the MASH (melting, assimilation, storage, and homogenization) processes at depths of b40 km and AFC (assimilation and fractional crystallization) processes in a midcrustal magma chamber. One large porphyry Cu-Au deposit (e.g., Nurkazghan) is associated with intrusions that have calc-alkaline geochemical signatures, with enrichment of light rare earth elements (LREE), depletion of heavy REE, Ba, Nb, Sr and Ti and low Sr/Y, Sm/Yb and La/Yb ratios, suggesting that the lower crustal source could be a clinopyroxenite. They are formed by partial melting of lower crust at depths of 3035 km with AFC important to magma evolution. Here, three genetical models are suggested for these mineralizing magmas in the CAOB: (1) thick (N 40 km) lower crust melting for adakitic magmas; (2) MASH and AFC for transitional magmas; and (3) thin (3035 km) lower crust melting followed by AFC for normal arc magmas. A majority of transitional and normal arc magmas suggest that thinner crust was important to the formation of porphyry Cu(-Au) and Au deposits that dominate in the CAOB.

Our geochronology and geochemistry results indicate that most of the mineralizing intrusions from the porphyry deposits in the CAOB formed in island arc settings from the Cambrian to Triassic. The intrusions at Erdenet, Koksai and Yubileinoe are exceptions, forming in continental arcs in the Permian, Silurian and Devonian, respectively. Paleozoic and minor Mesozoic porphyry deposits in the CAOB formed during six periods. The greatest metal endowment is associated with the Devonian porphyry deposits (374 to 372 Ma, e.g. Oyu Tolgoi). The largest number of porphyry deposits were emplaced in the Carboniferous (334 to 317 Ma, e.g., Aktogai, Kounrad, TuwuYandong, Almalyk). The CAOB is a complex collage of Paleozoic and Mesozoic tectonic elements and has considerable potential for further discoveries of large porphyry Cu(-Au-Mo) and Au deposits.

Item Details

Item Type:Refereed Article
Keywords:thinner lower crust, mineralizing intrusions, petrogenesis, paleozoic and mesozoic arc, porphyry, copper, gold, Paleozoic Mesozoic, central Asian orogenic belt
Research Division:Earth Sciences
Research Group:Geology
Research Field:Ore Deposit Petrology
Objective Division:Mineral Resources (excl. Energy Resources)
Objective Group:Other Mineral Resources (excl. Energy Resources)
Objective Field:Mineral Resources (excl. Energy Resources) not elsewhere classified
UTAS Author:Cooke, DR (Professor David Cooke)
ID Code:125192
Year Published:2018
Funding Support:Australian Research Council (IH130200004)
Web of Science® Times Cited:6
Deposited By:CODES ARC
Deposited On:2018-04-06
Last Modified:2019-03-13
Downloads:0

Repository Staff Only: item control page