University of Tasmania
Browse

File(s) under permanent embargo

Spurious sea ice formation caused by oscillatory ocean tracer advection schemes

journal contribution
posted on 2023-05-19, 16:07 authored by Naughten, KA, Benjamin Galton-FenziBenjamin Galton-Fenzi, Meissner, KJ, England, MH, Brassington, GB, Colberg, F, Hattermann, T, Debernard, JB
Tracer advection schemes used by ocean models are susceptible to artificial oscillations: a form of numerical error whereby the advected field alternates between overshooting and undershooting the exact solution, producing false extrema. Here we show that these oscillations have undesirable interactions with a coupled sea ice model. When oscillations cause the near-surface ocean temperature to fall below the freezing point, sea ice forms for no reason other than numerical error. This spurious sea ice formation has significant and wide-ranging impacts on Southern Ocean simulations, including the disappearance of coastal polynyas, stratification of the water column, erosion of Winter Water, and upwelling of warm Circumpolar Deep Water. This significantly limits the model’s suitability for coupled ocean-ice and climate studies. Using the terrain-following-coordinate ocean model ROMS (Regional Ocean Modelling System) coupled to the sea ice model CICE (Community Ice CodE) on a circumpolar Antarctic domain, we compare the performance of three different tracer advection schemes, as well as two levels of parameterised diffusion and the addition of flux limiters to prevent numerical oscillations. The upwind third-order advection scheme performs better than the centered fourth-order and Akima fourth-order advection schemes, with far fewer incidents of spurious sea ice formation. The latter two schemes are less problematic with higher parameterised diffusion, although some supercooling artifacts persist. Spurious supercooling was eliminated by adding flux limiters to the upwind third-order scheme. We present this comparison as evidence of the problematic nature of oscillatory advection schemes in sea ice formation regions, and urge other ocean/sea-ice modellers to exercise caution when using such schemes.

History

Publication title

Ocean Modelling

Volume

116

Pagination

108-117

ISSN

1463-5003

Department/School

Institute for Marine and Antarctic Studies

Publisher

Elsevier Sci Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Oxon, Ox5 1Gb

Rights statement

Copyright 2017 Elsevier Ltd.

Repository Status

  • Restricted

Socio-economic Objectives

Oceanic processes (excl. in the Antarctic and Southern Ocean)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC