eCite Digital Repository

Biotic and abiotic retention, recycling and remineralization of metals in the ocean


Boyd, PW and Ellwood, MJ and Tagliabue, A and Twining, BS, Biotic and abiotic retention, recycling and remineralization of metals in the ocean, Nature Geoscience, 10, (3) pp. 167-173. ISSN 1752-0894 (2017) [Refereed Article]

Copyright Statement

Copyright 2017 Macmillan Publishers Limited, part of Springer Nature

DOI: doi:10.1038/ngeo2876


Trace metals shape both the biogeochemical functioning and biological structure of oceanic provinces. Trace metal biogeochemistry has primarily focused on modes of external supply of metals from aeolian, hydrothermal, sedimentary and other sources. However, metals also undergo internal transformations such as abiotic and biotic retention, recycling and remineralization. The role of these internal transformations in metal biogeochemical cycling is now coming into focus. First, the retention of metals by biota in the surface ocean for days, weeks or months depends on taxon-specific metal requirements of phytoplankton, and on their ultimate fate: That is, viral lysis, senescence, grazing and/or export to depth. Rapid recycling of metals in the surface ocean can extend seasonal productivity by maintaining higher levels of metal bioavailability compared to the influence of external metal input alone. As metal-containing organic particles are exported from the surface ocean, different metals exhibit distinct patterns of remineralization with depth. These patterns are mediated by a wide range of physicochemical and microbial processes such as the ability of particles to sorb metals, and are influenced by the mineral and organic characteristics of sinking particles. We conclude that internal metal transformations play an essential role in controlling metal bioavailability, phytoplankton distributions and the subsurface resupply of metals.

Item Details

Item Type:Refereed Article
Keywords:element cycles, marine chemistry
Research Division:Earth Sciences
Research Group:Oceanography
Research Field:Chemical oceanography
Objective Division:Environmental Management
Objective Group:Marine systems and management
Objective Field:Oceanic processes (excl. in the Antarctic and Southern Ocean)
UTAS Author:Boyd, PW (Professor Philip Boyd)
ID Code:124002
Year Published:2017
Web of Science® Times Cited:68
Deposited By:Ecology and Biodiversity
Deposited On:2018-02-06
Last Modified:2018-08-09

Repository Staff Only: item control page