eCite Digital Repository
Risky business: the combined effects of fishing and changes in primary productivity on fish communities
Citation
Fu, C and Travers-Trolet, M and Velez, L and Gruss, A and Bundy, A and Shannon, LJ and Fulton, EA and Akoglu, E and Houle, JE and Coll, M and Verley, P and Heymans, JJ and John, E and Shin, YJ, Risky business: the combined effects of fishing and changes in primary productivity on fish communities, Ecological Modelling, 368 pp. 265-276. ISSN 0304-3800 (2018) [Refereed Article]
Copyright Statement
Copyright 2017 The Authors. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/
DOI: doi:10.1016/j.ecolmodel.2017.12.003
Abstract
There is an increasing need to understand ecosystem responses to multiple stressors in that such complex responses depend not only on species-level responses, but also on species interactions and ecosystem structure. In this study, we used a multi-model ecosystem simulation approach to explore the combined effects of fishing and primary productivity on different components of the food-web across a suite of ecosystems and a range of model types. Simulations were carried out under different levels of primary productivity and various fishing scenarios. In addition to exploring synergistic, additive or antagonistic combined effects of multiple stressors, we included a fourth category "dampened", which refers to less negative or less positive impacts compared to additive ones, and in contrast to previous studies, we explicitly considered the direction (positive or negative) of the combined effects. We focused on two specific combined effects (negative synergism and positive dampened) associated with the risk of resultant lower fish biomass than expected under additive effects. Through a meta-analysis of the multi-models' simulation results, we found that (i) the risk of negative synergism was generally higher for low-trophic-level (LTL) taxa, implying that following an increase of fishing pressure on a given LTL stock, the subsequent decrease of biomass under low primary productivity would be larger than expected under additive effects and (ii) the risk of positive dampened effects was generally higher for high-trophic-level (HTL) taxa, implying that given a management measure aimed at reducing the impact of fishing on HTL stocks, the subsequent rebuilding of these stocks would be slower than expected. Our approach to categorizing and exploring cumulative effects can be applied to evaluate other community properties, and provide guidance for fisheries management.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | marine ecosystem, fishing, combined effect, meta-analysis, synergism, multiple drivers |
Research Division: | Agricultural, Veterinary and Food Sciences |
Research Group: | Fisheries sciences |
Research Field: | Fisheries management |
Objective Division: | Animal Production and Animal Primary Products |
Objective Group: | Fisheries - wild caught |
Objective Field: | Fisheries - wild caught not elsewhere classified |
UTAS Author: | Fulton, EA (Dr Elizabeth Fulton) |
ID Code: | 123737 |
Year Published: | 2018 |
Web of Science® Times Cited: | 50 |
Deposited By: | Fisheries and Aquaculture |
Deposited On: | 2018-01-23 |
Last Modified: | 2019-02-21 |
Downloads: | 25 View Download Statistics |
Repository Staff Only: item control page