University of Tasmania
Browse
Pittard_et_al-2017-Geophysical_Research_Letters.pdf (1.68 MB)

Future sea level change from Antarctica's Lambert-Amery glacial system

Download (1.68 MB)
journal contribution
posted on 2023-05-19, 15:06 authored by Pittard, ML, Benjamin Galton-FenziBenjamin Galton-Fenzi, Christopher WatsonChristopher Watson, Jason RobertsJason Roberts
Future global mean sea level (GMSL) change is dependent on the complex response of the Antarctic ice sheet to ongoing changes and feedbacks in the climate system. The Lambert-Amery glacial system has been observed to be stable over the recent period yet is potentially at risk of rapid grounding line retreat and ice discharge given that a significant volume of its ice is grounded below sea level, making its future contribution to GMSL uncertain. Using a regional ice sheet model of the Lambert-Amery system, we find that under a range of future warming and extreme scenarios, the simulated grounding line remains stable and does not trigger rapid mass loss from grounding line retreat. This allows for increased future accumulation to exceed the mass loss from ice dynamical changes. We suggest that the Lambert-Amery glacial system will remain stable or gain ice mass and mitigate a portion of potential future sea level rise over the next 500 years, with a range of +3.6 to −117.5 mm GMSL equivalent.

History

Publication title

Geophysical Research Letters

Volume

44

Issue

14

Pagination

7347-7355

ISSN

0094-8276

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Geophysical Union

Place of publication

2000 Florida Ave Nw, Washington, USA, Dc, 20009

Rights statement

©2017. American Geophysical Union

Repository Status

  • Open

Socio-economic Objectives

Effects of climate change on Antarctic and sub-Antarctic environments (excl. social impacts)

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC