eCite Digital Repository

Influence of snow depth and surface flooding on light transmission through Antarctic pack ice

Citation

Arndt, S and Meiners, KM and Ricker, R and Krumpen, T and Katlein, C and Nicolaus, M, Influence of snow depth and surface flooding on light transmission through Antarctic pack ice, Journal of Geophysical Research: Oceans, 122, (3) pp. 2108-2119. ISSN 2169-9275 (2017) [Refereed Article]


Preview
PDF
3Mb
  

Copyright Statement

Copyright 2017. The Authors. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/

DOI: doi:10.1002/2016JC012325

Abstract

Snow on sea ice alters the properties of the underlying ice cover as well as associated physical and biological processes at the interfaces between atmosphere, sea ice, and ocean. The Antarctic snow cover persists during most of the year and contributes significantly to the sea-ice mass due to the widespread surface flooding and related snow-ice formation. Snow also enhances the sea-ice surface reflectivity of incoming shortwave radiation and determines therefore the amount of light being reflected, absorbed, and transmitted to the upper ocean. Here, we present results of a case study of spectral solar radiation measurements under Antarctic pack ice with an instrumented Remotely Operated Vehicle in the Weddell Sea in 2013. In order to identify the key variables controlling the spatial distribution of the under-ice light regime, we exploit under-ice optical measurements in combination with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth. Our results reveal that the distribution of flooded and nonflooded sea-ice areas dominates the spatial scales of under-ice light variability for areas smaller than 100 m-by-100 m. However, the heterogeneous and highly metamorphous snow on Antarctic pack ice obscures a direct correlation between the under-ice light field and snow depth. Compared to the Arctic, light levels under Antarctic pack ice are extremely low during spring ( < 0.1%). This is mostly a result of the distinctly different dominant sea ice and snow properties with seasonal snow cover (including strong surface melt and summer melt ponds) in the Arctic and a year-round snow cover and widespread surface flooding in the Southern Ocean.

Item Details

Item Type:Refereed Article
Keywords:sea ice, optical properties, snow depth
Research Division:Earth Sciences
Research Group:Geophysics
Research Field:Geophysics not elsewhere classified
Objective Division:Environment
Objective Group:Flora, Fauna and Biodiversity
Objective Field:Antarctic and Sub-Antarctic Flora, Fauna and Biodiversity
UTAS Author:Meiners, KM (Dr Klaus Meiners)
ID Code:123616
Year Published:2017
Web of Science® Times Cited:12
Deposited By:CRC-Antarctic Climate & Ecosystems
Deposited On:2018-01-15
Last Modified:2018-04-23
Downloads:81 View Download Statistics

Repository Staff Only: item control page