University of Tasmania
Browse

File(s) under permanent embargo

Six-DOF simulations of an underwater vehicle undergoing straight line and steady turning manoeuvres

This paper reports on numerical simulations conducted on an underwater vehicle for six-degrees of freedom (6-DOF) free running manoeuvres using Computational Fluid Dynamics (CFD). The CFD manoeuvring trials (straight line and steady turning manoeuvres) were conducted using a model-scaled BB2 submarine with movable control planes and a body force propeller represented by an actuator disk incorporating predetermined propulsion properties. The propulsion properties were obtained from captive self-propulsion simulation adopting the actual BB2 propeller. The free running simulations were validated against experimental data. The results showed that the 6-DOF CFD simulations are capable of predicting the BB2 manoeuvring characteristics with good agreement against the experimental data. The 6-DOF manoeuvring simulations carried out allow for the unsteady viscosity effects, which is usually a limitation of the traditional coefficient-based prediction method. The simulations will enable accurate determination of the vehicle's manoeuvring characteristics, which are essential for the control system design and its safe operating envelope.

History

Publication title

Ocean Engineering

Volume

150

Pagination

102-112

ISSN

0029-8018

Department/School

Australian Maritime College

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

United Kingdom

Rights statement

© 2017 Elsevier Ltd.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in engineering

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC