eCite Digital Repository
Evaluation of PMIP2 and PMIP3 simulations of mid-Holocene climate in the Indo-Pacific, Australasian and Southern Ocean regions
Citation
Ackerly, D and Reeves, J and Barr, C and Bostock, H and Fitzsimmons, K and Fletcher, M-S and Gouramanis, C and McGregor, H and Mooney, S and Phipps, SJ and Tibby, J and Tyler, J, Evaluation of PMIP2 and PMIP3 simulations of mid-Holocene climate in the Indo-Pacific, Australasian and Southern Ocean regions, Climate of the Past, 13, (11) pp. 1661-1684. ISSN 1814-9324 (2017) [Refereed Article]
![]() | PDF 10Mb |
Copyright Statement
© Author(s) 2017. Licensed under Creative Commons Attribution 3.0 Unported (CC BY 3.0) http://creativecommons.org/licenses/by/3.0/
DOI: doi:10.5194/cp-13-1661-2017
Abstract
This study uses the "simplified patterns of temperature and effective precipitation" approach from the Australian component of the international palaeoclimate synthesis effort (INTegration of Ice core, MArine and TErrestrial records – OZ-INTIMATE) to compare atmosphere–ocean general circulation model (AOGCM) simulations and proxy reconstructions. The approach is used in order to identify important properties (e.g. circulation and precipitation) of past climatic states from the models and proxies, which is a primary objective of the Southern Hemisphere Assessment of PalaeoEnvironment (SHAPE) initiative. The AOGCM data are taken from the Paleoclimate Modelling Intercomparison Project (PMIP) mid-Holocene (ca. 6000 years before present, 6 ka) and pre-industrial control (ca. 1750 CE, 0 ka) experiments. The synthesis presented here shows that the models and proxies agree on the differences in climate state for 6 ka relative to 0 ka, when they are insolation driven. The largest uncertainty between the models and the proxies occurs over the Indo-Pacific Warm Pool (IPWP). The analysis shows that the lower temperatures in the Pacific at around 6 ka in the models may be the result of an enhancement of an existing systematic error. It is therefore difficult to decipher which one of the proxies and/or the models is correct. This study also shows that a reduction in the Equator-to-pole temperature difference in the Southern Hemisphere causes the mid-latitude westerly wind strength to reduce in the models; however, the simulated rainfall actually increases over the southern temperate zone of Australia as a result of higher convective precipitation. Such a mechanism (increased convection) may be useful for resolving disparities between different regional proxy records and model simulations. Finally, after assessing the available datasets (model and proxy), opportunities for better model–proxy integrated research are discussed.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | climate modelling, palaeoclimate, Holocene, Indo-Pacific, Australasia, Southern Ocean |
Research Division: | Earth Sciences |
Research Group: | Physical geography and environmental geoscience |
Research Field: | Palaeoclimatology |
Objective Division: | Environmental Policy, Climate Change and Natural Hazards |
Objective Group: | Understanding climate change |
Objective Field: | Climate change models |
UTAS Author: | Phipps, SJ (Dr Steven Phipps) |
ID Code: | 123057 |
Year Published: | 2017 |
Web of Science® Times Cited: | 2 |
Deposited By: | Oceans and Cryosphere |
Deposited On: | 2017-12-13 |
Last Modified: | 2018-05-25 |
Downloads: | 55 View Download Statistics |
Repository Staff Only: item control page