eCite Digital Repository

Erythropoietin improves motor and cognitive deficit, axonal pathology, and neuroinflammation in a combined model of diffuse traumatic brain injury and hypoxia, in association with upregulation of the erythropoietin receptor

Citation

Hellewell, S and Yan, EB and Alwis, DS and Bye, N and Morganti-Kossmann, MC, Erythropoietin improves motor and cognitive deficit, axonal pathology, and neuroinflammation in a combined model of diffuse traumatic brain injury and hypoxia, in association with upregulation of the erythropoietin receptor, Journal of Neuroinflammation, 10 pp. 1-21. ISSN 1742-2094 (2013) [Refereed Article]


Preview
PDF
2Mb
  

Copyright Statement

© 2013 Hellewell et al. Licensed under Creative Common Attribution 2.0 Generic (CC BY 2.0) https://creativecommons.org/licenses/by/2.0/

DOI: doi:10.1186/1742-2094-10-156

Abstract

Background: Diffuse axonal injury is a common consequence of traumatic brain injury (TBI) and often co-occurs with hypoxia, resulting in poor neurological outcome for which there is no current therapy. Here, we investigate the ability of the multifunctional compound erythropoietin (EPO) to provide neuroprotection when administered to rats after diffuse TBI alone or with post-traumatic hypoxia.

Methods: Sprague–Dawley rats were subjected to diffuse traumatic axonal injury (TAI) followed by 30 minutes of hypoxic (Hx, 12% O2) or normoxic ventilation, and were administered recombinant human EPO-α (5000 IU/kg) or saline at 1 and 24 hours post-injury. The parameters examined included: 1) behavioural and cognitive deficit using the Rotarod, open field and novel object recognition tests; 2) axonal pathology (NF-200); 3) callosal degradation (hematoxylin and eosin stain); 3) dendritic loss (MAP2); 4) expression and localisation of the EPO receptor (EpoR); 5) activation/infiltration of microglia/macrophages (CD68) and production of IL-1β.

Results: EPO significantly improved sensorimotor and cognitive recovery when administered to TAI rats with hypoxia (TAI + Hx). A single dose of EPO at 1 hour reduced axonal damage in the white matter of TAI + Hx rats at 1 day by 60% compared to vehicle. MAP2 was decreased in the lateral septal nucleus of TAI + Hx rats; however, EPO prevented this loss, and maintained MAP2 density over time. EPO administration elicited an early enhanced expression of EpoR 1 day after TAI + Hx compared with a 7-day peak in vehicle controls. Furthermore, EPO reduced IL-1β to sham levels 2 hours after TAI + Hx, concomitant to a decrease in CD68 positive cells at 7 and 14 days.

Conclusions: When administered EPO, TAI + Hx rats had improved behavioural and cognitive performance, attenuated white matter damage, resolution of neuronal damage spanning from the axon to the dendrite, and suppressed neuroinflammation, alongside enhanced expression of EpoR. These data provide compelling evidence of EPO’s neuroprotective capability. Few benefits were observed when EPO was administered to TAI rats without hypoxia, indicating that EPO’s neuroprotective capacity is bolstered under hypoxic conditions, which may be an important consideration when EPO is employed for neuroprotection in the clinic.

Item Details

Item Type:Refereed Article
Keywords:TBI; hypoxia; rhEPO; neuroinflammation
Research Division:Medical and Health Sciences
Research Group:Neurosciences
Research Field:Central Nervous System
Objective Division:Health
Objective Group:Clinical Health (Organs, Diseases and Abnormal Conditions)
Objective Field:Nervous System and Disorders
Author:Bye, N (Dr Nicole Bye)
ID Code:122255
Year Published:2013
Web of Science® Times Cited:24
Deposited By:Pharmacy
Deposited On:2017-11-07
Last Modified:2017-11-24
Downloads:2 View Download Statistics

Repository Staff Only: item control page