eCite Digital Repository

Rare earth element fluorocarbonate minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia

Citation

Schmandt, DS and Cook, NJ and Ciobanu, CL and Ehrig, K and Wade, BP and Gilbert, S and Kamenetsky, VS, Rare earth element fluorocarbonate minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia, Minerals, 7, (10) Article 202. ISSN 2075-163X (2017) [Refereed Article]


Preview
PDF
Pending copyright assessment - Request a copy
1Mb
  

DOI: doi:10.3390/min7100202

Abstract

Olympic Dam is a world-class breccia-hosted iron-oxide copper-gold-uranium ore deposit located in the Gawler Craton, South Australia. It contains elevated concentrations of rare earth elements (REE) which occur as the REE minerals bastnäsite, synchysite, florencite, monazite, and xenotime. This is the first study to focus on the mineralogy and composition of the most abundant REE mineral at Olympic Dam, bastnäsite, and subordinate synchysite. The sample suite extends across the deposit and represents different sulfide mineralization styles (chalcopyrite-bornite and bornite-chalcocite) and breccias of various types, ranging from those dominated by clasts of granite, dykes, and hematite. The REE-fluorocarbonates (bastnäsite and synchysite) typically occur as fine-grained (<50 μm) disseminations in Cu-Fe-sulfides and gangue minerals, and also within breccia matrix. They are also locally concentrated within macroscopic REE-mineral-rich pockets at various locations across the deposit. Such coarse-grained samples formed the primary target of this study. Three general textural groups of bastnäsite are recognized: matrix (further divided into disseminated, fine-grained, and stubby types), irregular (sulfide-associated), and clast replacement. Textures are largely driven by the specific location and prevailing mineral assemblage, with morphology and grain size often controlled by the associated minerals (hematite, sulfides). Major element concentration data reveal limited compositional variation among the REE-fluorocarbonates; all are Ce-dominant. Subtle compositional differences among REE-fluorocarbonates define a spectrum from relatively La-enriched to (Ce + Nd)-enriched phases. Granite-derived hydrothermal fluids were the likely source of F in the REE-fluorocarbonates, as well as some of the CO2, which may also have been contributed by associated mafic-ultramafic magmatism. However, transport of REE by Cl-ligands is the most likely scenario. Stubby bastnäsite and synchysite may have formed earlier, coincident with hydrothermal alteration of granite releasing Ca from feldspars. Other categories of bastnäsite, notably those co-existing with sulfides, and reaching the top of the IOCG mineralization at Olympic Dam (chalcocite + bornite zone) are relatively younger. Such an interpretation is concordant with subtle changes in the REE patterns for the different categories. The common association of bastnäsite and fluorite throughout the deposit is typical of the hematite breccias and can be deposited from neutral, slightly acidic fluids (sericite stability) at T ≈ 300 °C.

Item Details

Item Type:Refereed Article
Keywords:Olympic Dam, bastnasite, synchysite, mineral compositions
Research Division:Earth Sciences
Research Group:Geology
Research Field:Ore Deposit Petrology
Objective Division:Mineral Resources (excl. Energy Resources)
Objective Group:Mineral Exploration
Objective Field:Titanium Minerals, Zircon, and Rare Earth Metal Ore (e.g. Monazite) Exploration
Author:Kamenetsky, VS (Professor Vadim Kamenetsky)
ID Code:121970
Year Published:2017
Funding Support:Australian Research Council (LP130100438)
Deposited By:CODES ARC
Deposited On:2017-10-24
Last Modified:2017-10-24
Downloads:0

Repository Staff Only: item control page