eCite Digital Repository

Drusen in patient-derived hiPSC-RPE models of macular dystrophies

Citation

Galloway, CA and Dalvi, S and Hung, SSC and MacDonald, LA and Latchney, LR and Wong, RCB and Guymer, RH and Mackey, DA and Williams, DS and Chung, MM and Gamm, DM and Pebay, A and Hewitt, AW and Singh, R, Drusen in patient-derived hiPSC-RPE models of macular dystrophies, Proceedings of the National Academy of Sciences of The United States of America, 114, (39) pp. E8214-E8223. ISSN 0027-8424 (2017) [Refereed Article]

Copyright Statement

Copyright 2017 PNAS

DOI: doi:10.1073/pnas.1710430114

Abstract

Age-related macular degeneration (AMD) and related macular dystrophies (MDs) are a major cause of vision loss. However, the mechanisms underlying their progression remain ill-defined. This is partly due to the lack of disease models recapitulating the human pathology. Furthermore, in vivo studies have yielded limited understanding of the role of specific cell types in the eye vs. systemic influences (e.g., serum) on the disease pathology. Here, we use human induced pluripotent stem cell-retinal pigment epithelium (hiPSC-RPE) derived from patients with three dominant MDs, Sorsby's fundus dystrophy (SFD), Doyne honeycomb retinal dystrophy/malattia Leventinese (DHRD), and autosomal dominant radial drusen (ADRD), and demonstrate that dysfunction of RPE cells alone is sufficient for the initiation of sub-RPE lipoproteinaceous deposit (drusen) formation and extracellular matrix (ECM) alteration in these diseases. Consistent with clinical studies, sub-RPE basal deposits were present beneath both control (unaffected) and patient hiPSC-RPE cells. Importantly basal deposits in patient hiPSC-RPE cultures were more abundant and displayed a lipid- and protein-rich "drusen-like" composition. Furthermore, increased accumulation of COL4 was observed in ECM isolated from control vs. patient hiPSC-RPE cultures. Interestingly, RPE-specific up-regulation in the expression of several complement genes was also seen in patient hiPSC-RPE cultures of all three MDs (SFD, DHRD, and ADRD). Finally, although serum exposure was not necessary for drusen formation, COL4 accumulation in ECM, and complement pathway gene alteration, it impacted the composition of drusen-like deposits in patient hiPSC-RPE cultures. Together, the drusen model(s) of MDs described here provide fundamental insights into the unique biology of maculopathies affecting the RPE-ECM interface.

Item Details

Item Type:Refereed Article
Research Division:Medical and Health Sciences
Research Group:Ophthalmology and Optometry
Research Field:Ophthalmology
Objective Division:Health
Objective Group:Clinical Health (Organs, Diseases and Abnormal Conditions)
Objective Field:Hearing, Vision, Speech and Their Disorders
Author:Mackey, DA (Professor David Mackey)
Author:Hewitt, AW (Dr Alex Hewitt)
ID Code:121325
Year Published:2017
Deposited By:Menzies Institute for Medical Research
Deposited On:2017-09-23
Last Modified:2017-11-29
Downloads:0

Repository Staff Only: item control page