eCite Digital Repository

Constrained coordinated distributed control of smart grid with asynchronous information exchange

Citation

Millar, B and Jiang, D and Haque, ME, Constrained coordinated distributed control of smart grid with asynchronous information exchange, Journal of Modern Power Systems and Clean Energy, 3, (4) pp. 512-525. ISSN 2196-5625 (2015) [Refereed Article]


Preview
PDF (Published paper)
1Mb
  

Copyright Statement

Copyright The Author(s) 2015. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/

DOI: doi:10.1007/s40565-015-0168-1

Abstract

Smart grid constrained optimal control is a complex issue due to the constant growth of grid complexity and the large volume of data available as input to smart device control. In this context, traditional centralized control paradigms may suffer in terms of the timeliness of optimization results due to the volume of data to be processed and the delayed asynchronous nature of the data transmission. To address these limits of centralized control, this paper presents a coordinated, distributed algorithm based on distributed, local controllers and a central coordinator for exchanging summarized global state information. The proposed model for exchanging global state information is resistant to fluctuations caused by the inherent interdependence between local controllers, and is robust to delays in information exchange. In addition, the algorithm features iterative refinement of local state estimations that is able to improve local controller ability to operate within network constraints. Application of the proposed coordinated, distributed algorithm through simulation shows its effectiveness in optimizing a global goal within a complex distribution system operating under constraints, while ensuring network operation stability under varying levels of information exchange delay, and with a range of network sizes.

Item Details

Item Type:Refereed Article
Keywords:smart grid, distributed optimization, demand-side management, distributed generation, distributed storage, approximate dynamic programming
Research Division:Engineering
Research Group:Electrical and Electronic Engineering
Research Field:Power and Energy Systems Engineering (excl. Renewable Power)
Objective Division:Energy
Objective Group:Energy Storage, Distribution and Supply
Objective Field:Energy Transmission and Distribution (excl. Hydrogen)
Author:Millar, B (Mr Benjamin Millar)
Author:Jiang, D (Dr Danchi Jiang)
ID Code:121251
Year Published:2015
Web of Science® Times Cited:1
Deposited By:Engineering
Deposited On:2017-09-20
Last Modified:2017-10-27
Downloads:2 View Download Statistics

Repository Staff Only: item control page