eCite Digital Repository

Capturing within catchment variation in evapotranspiration from montane forests using LiDAR canopy profiles with measured and modelled fluxes of water

Citation

Mitchell, P and Lane, PNJ and Benyon, RG, Capturing within catchment variation in evapotranspiration from montane forests using LiDAR canopy profiles with measured and modelled fluxes of water, Ecohydrology, 5, (6) pp. 708-720. ISSN 1936-0584 (2012) [Refereed Article]

Copyright Statement

Copyright 2011 John Wiley & Sons, Ltd.

DOI: doi:10.1002/eco.255

Abstract

Patterns in forest structure and function are tightly coupled to variation in energy and soil water gradients and disturbance history across the landscape. In eucalypt forests of southern Australia, changes in forest structure may account for the majority of variation in the evapotranspiration (Et) signal across a single forest type. In this study, the potential for using light detection and ranging (LiDAR)-derived canopy height profiles to predict key components of Et; transpiration (Esap), interception loss (Ei) and forest floor evapotranspiration (Efloor) was assessed in a mixed-species eucalypt forest in south-eastern Australia. Step-wise regression was used to select suitable LiDAR canopy height indices to predict stand structural attributes at all grid points within the catchment using field plot inventory data (r2 = 0.760.88). Similar rates of sap velocity were observed among trees at different landscape positions and during all seasons, irrespective of tree size and stature, enabling scaling of stand-level Esap. The revised Gash interception model was successfully used to model Et across the catchment using stand-level variation in canopy cover (derived from LiDAR). Similarly, Efloor was quantified spatially using variation in leaf area index and a two-bucket numeric model to interpolate field measurements. Our results show that variation in forest structure arising from changes in elevation in these south-facing catchments is a major determinant of forest water use and shows a threefold change in annual Et across the elevation gradient. The merging of detailed forest structural data and field-validated Et fluxes offers promise in advancing our understanding and prediction of key ecohydrologic processes in forested catchments.

Item Details

Item Type:Refereed Article
Keywords:LiDAR, forest water use, interception, eucalypt forest, scaling transpiration, sapwood area
Research Division:Engineering
Research Group:Geomatic Engineering
Research Field:Photogrammetry and Remote Sensing
Objective Division:Environment
Objective Group:Flora, Fauna and Biodiversity
Objective Field:Forest and Woodlands Flora, Fauna and Biodiversity
Author:Mitchell, P (Dr Patrick Mitchell)
ID Code:120018
Year Published:2012
Web of Science® Times Cited:14
Deposited By:Plant Science
Deposited On:2017-08-08
Last Modified:2017-09-27
Downloads:0

Repository Staff Only: item control page