University of Tasmania
Browse

File(s) under permanent embargo

Defining dynamic pelagic habitats in oceanic waters off eastern Australia

journal contribution
posted on 2023-05-19, 09:26 authored by Hobday, AJ, Young, JW, Moeseneder, C, Dambacher, J
Although many species in the pelagic ocean are widespread, they are not randomly distributed. These species may have associations with particular water masses or habitats, but to best understand patterns in the ocean, these habitats must be identified. Previous efforts have produced static or seasonal climatologies, which still represent smearing over habitats. The Eastern Tuna and Billfish Longline Fishery (ETBF) targets a range of high trophic level species in oceanic waters off eastern Australia. In this study, dynamic ocean habitats in the region were identified for each month based on cluster analysis of five oceanographic variables averaged at a monthly time scale and a spatial scale of 0.5° for the period 1995-2006. A total of seven persistent habitats were identified off eastern Australia with intra and interannual variation in size and location, indicating the importance of spatial and temporal variation in the dynamics of the region. The degree to which these dynamic habitats were distinguished was tested using (i) stable isotope analysis of top fish predators caught in the region and (ii) estimates of variation in estimated abundance generated from catch data from the fishery. More precise estimates (measured as lower total CV) of isotopic values from swordfish (Xiphias gladius), yellowfin tuna (Thunnus albacares) and albacore (Thunnus alalunga) were obtained for 4 of 6 isotope comparisons using the dynamic habitat groupings, which indicate that stratifying by pelagic habitat improved precision. Dynamic habitats produced more precise abundance estimates for 7 of 8 large pelagic species examined, with an average reduction in total CV of 19% compared to when abundance was estimated based on static habitat stratification. These findings could be used to guide development of effective monitoring strategies that can distinguish patterns due to environmental variation, and in the longer term, climate change.

History

Publication title

Deep-Sea Research. Part 2: Topical Studies in Oceanography

Volume

58

Issue

5

Pagination

734-745

ISSN

0967-0645

Department/School

Institute for Marine and Antarctic Studies

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Rights statement

Crown Copyright 2010 Published by Elsevier Ltd. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Other environmental management not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC