University of Tasmania
Browse

File(s) under permanent embargo

Vein density is independent of epidermal cell size in Arabidopsis mutants

journal contribution
posted on 2023-05-19, 09:19 authored by Madeline Carins-Murphy, Dow, GJ, Gregory JordanGregory Jordan, Timothy BrodribbTimothy Brodribb
Densities of leaf minor veins and stomata are co-ordinated within and across vascular plants. This maximises the benefit-to-cost ratio of leaf construction by ensuring stomata receive the minimum amount of water required to maintain optimal aperture. A ‘passive dilution’ mechanism in which densities of veins and stomata are co-regulated by epidermal cell size is thought to facilitate this co-ordination. However, unlike stomata, veins are spatially isolated from the epidermis and thus may not be directly regulated by epidermal cell expansion. Here, we use mutant genotypes of Arabidopsis thaliana (L.) Heynh. with altered stomatal and epidermal cell development to test this mechanism. To do this we compared observed relationships between vein density and epidermal cell size with modelled relationships that assume veins and stomata are passively diluted by epidermal cell expansion. Data from wild-type plants were consistent with the ‘passive dilution’ mechanism, but in mutant genotypes vein density was independent of epidermal cell size. Hence, vein density is not causally linked to epidermal cell expansion. This suggests that adaptation favours synchronised changes to the cell size of different leaf tissues to coordinate veins and stomata, and thus balance water supply with transpirational demand.

Funding

Australian Research Council

History

Publication title

Functional Plant Biology

Volume

44

Issue

4

Pagination

410-418

ISSN

1445-4408

Department/School

School of Natural Sciences

Publisher

CSIRO Publishing

Place of publication

150 Oxford St, Po Box 1139, Collingwood, Australia, Victoria, 3066

Rights statement

Copyright 2017 CSIRO

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the environmental sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC