eCite Digital Repository

Determining trends and environmental drivers from long-term marine mammal and seabird data: examples from Southern Australia


Chambers, LE and Patterson, T and Hobday, AJ and Arnould, JPY and Tuck, GN and Wilcox, C and Dann, P, Determining trends and environmental drivers from long-term marine mammal and seabird data: examples from Southern Australia, Regional Environmental Change, 15, (1) pp. 197-209. ISSN 1436-3798 (2014) [Refereed Article]

Copyright Statement

Copyright 2014 Springer-Verlag Berlin Heidelberg

DOI: doi:10.1007/s10113-014-0634-8


Climate change is acknowledged as an emerging threat for top-order marine predators, yet obtaining evidence of impacts is often difficult. In south-eastern Australia, a marine global warming hotspot, evidence suggests that climate change will profoundly affect pinnipeds and seabirds. Long-term data series are available to assess some speciesí responses to climate. Researchers have measured a variety of chronological and population variables, such as laying dates, chick or pup production, colony-specific abundance and breeding success. Here, we consider the challenges in accurately assessing trends in marine predator data, using long-term data series that were originally collected for other purposes, and how these may be driven by environmental change and variability. In the past, many studies of temporal changes and environmental drivers used linear analyses and we demonstrate the (theoretical) relationship between the magnitude of a trend, its variability, and the duration of a data series required to detect a linear trend. However, species may respond to environmental change in a nonlinear manner and, based on analysis of time-series from south-eastern Australia, it appears that the assumptions of a linear model are often violated, particularly for measures of population size. The commonly measured demographic variables exhibit different degrees of variation, which influences the ability to detect climate signals. Due to their generally lower year-to-year variability, we illustrate that monitoring of variables such as mass and breeding chronology should allow detection of temporal trends earlier in a monitoring programme than observations of breeding success and population size. Thus, establishing temporal changes with respect to climate change from a monitoring programme over a relatively short time period requires careful a priori choice of biological variables.

Item Details

Item Type:Refereed Article
Keywords:climate, Little Penguin, marine mammal, regression, seabird, South-eastern Australia
Research Division:Biological Sciences
Research Group:Ecology
Research Field:Marine and estuarine ecology (incl. marine ichthyology)
Objective Division:Environmental Management
Objective Group:Marine systems and management
Objective Field:Marine biodiversity
UTAS Author:Hobday, AJ (Dr Alistair Hobday)
UTAS Author:Tuck, GN (Dr Geoffrey Tuck)
UTAS Author:Wilcox, C (Dr Chris Wilcox)
ID Code:119561
Year Published:2014
Web of Science® Times Cited:26
Deposited By:Ecology and Biodiversity
Deposited On:2017-08-02
Last Modified:2017-09-27

Repository Staff Only: item control page