eCite Digital Repository

Comparison of coral reef ecosystems along a fishing pressure gradient

Citation

Weijerman, M and Fulton, EA and Parrish, FA, Comparison of coral reef ecosystems along a fishing pressure gradient, PLoS One, 8, (5) Article e63797. ISSN 1932-6203 (2013) [Refereed Article]


Preview
PDF
869Kb
  

Copyright Statement

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

DOI: doi:10.1371/journal.pone.0063797

Abstract

Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all three models, enhancing comparability. Model outputs–such as net system production, size structure of the community, total throughput, production, consumption, production-to-respiration ratio, and Finn’s cycling index and mean path length–indicate that the systems around the unpopulated French Frigate Shoals and along the relatively lightly populated Kona Coast of Hawai’i Island are mature, stable systems with a high efficiency in recycling of biomass. In contrast, model results show that the reef system around the most populated island in the State of Hawai’i, O’ahu, is in a transitional state with reduced ecosystem resilience and appears to be shifting to an algaldominated system. Evaluation of the candidate indicators for fishing pressure showed that indicators at the community level (e.g., total biomass, community size structure, trophic level of the community) were most robust (i.e., showed the clearest trend) and that multiple indicators are necessary to identify fishing perturbations. These indicators could be used as performance indicators when compared to a baseline for management purposes. This study shows that ecosystem models can be valuable tools in identification of the system state in terms of complexity, stability, and resilience and, therefore, can complement biological metrics currently used by monitoring programs as indicators for coral reef status. Moreover, ecosystem models can improve our understanding of a system’s internal structure that can be used to support management in identification of approaches to reverse unfavorable states.

Item Details

Item Type:Refereed Article
Keywords:coral reefs, fishing pressure gradient, ecosystem resilience
Research Division:Agricultural and Veterinary Sciences
Research Group:Fisheries Sciences
Research Field:Aquatic Ecosystem Studies and Stock Assessment
Objective Division:Environment
Objective Group:Flora, Fauna and Biodiversity
Objective Field:Marine Flora, Fauna and Biodiversity
Author:Fulton, EA (Dr Elizabeth Fulton)
ID Code:119384
Year Published:2013
Web of Science® Times Cited:15
Deposited By:Sustainable Marine Research Collaboration
Deposited On:2017-07-31
Last Modified:2017-08-17
Downloads:8 View Download Statistics

Repository Staff Only: item control page