University of Tasmania
Browse
McAdam et al 2017 PP.pdf (1.72 MB)

Determining the site of action of strigolactones during nodulation

Download (1.72 MB)
journal contribution
posted on 2023-05-19, 08:37 authored by Erin McAdam, Hugill, C, Fort, S, Samian, E, Cottaz, S, Noel DaviesNoel Davies, James ReidJames Reid, Eloise FooEloise Foo
Strigolactones (SLs) influence the ability of legumes to associate with nitrogen-fixing bacteria. In this study we determine the precise stage at which SLs influence nodulation. We show that SLs promote infection thread formation, as a null SL-deficient pea (Pisum sativum) mutant forms significantly less infection threads than wild type plants and this reduction can be overcome by the application of the synthetic SL GR24. We found no evidence that SLs influence physical events in the plant before or after infection thread formation, since SL-deficient plants displayed a similar ability to induce root hair curling in response to rhizobia or lipochito-oligosaccharides (LCOs) and SL-deficient nodules appear to fix nitrogen at a similar rate to wild type plants. In contrast, a SL receptor mutant displayed no decrease in infection thread formation or nodule number, suggesting SL-deficiency may influence the bacterial partner. We found this influence of SL-deficiency was not due to altered flavonoid exudation or ability of root exudates to stimulate bacterial growth. The influence of SL-deficiency on infection thread formation was accompanied by reduced expression of some early nodulation (ENOD) genes. Importantly, SL synthesis is down-regulated by mutations in genes of the Nod LCO signalling pathway and this requires the downstream transcription factor NSP2 but not NIN. This, together with the fact that the expression of certain SL biosynthesis genes can be elevated in response to rhizobia/Nod factors suggests that Nod LCOs may induce SL biosynthesis. SLs appear to influence nodulation independently of ethylene action, as SL-deficient and ethylene insensitive double mutant plants display essentially additive phenotypes and we found no evidence that SLs influence ethylene synthesis or vice versa.

Funding

Australian Research Council

History

Publication title

Plant Physiology

Volume

174

Pagination

1-16

ISSN

0032-0889

Department/School

School of Natural Sciences

Publisher

Amer Soc Plant Biologists

Place of publication

15501 Monona Drive, Rockville, USA, Md, 20855

Rights statement

Copyright 2017 American Society of Plant Biologists

Repository Status

  • Open

Socio-economic Objectives

Environmentally sustainable plant production not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC