eCite Digital Repository

Metabolism, temperature, and ventilation

Citation

Mortola, JP and Maskrey, M, Metabolism, temperature, and ventilation, Comprehensive Physiology, 1, (4) pp. 1679-1709. ISSN 2040-4603 (2011) [Refereed Article]

DOI: doi:10.1002/cphy.c100008

Abstract

In mammals and birds, all oxygen used (VO2) must pass through the lungs; hence, some degree of coupling between VO2 and pulmonary ventilation (VE) is highly predictable. Nevertheless, VE is also involved with CO2 elimination, a task that is often in conflict with the convection of O2. In hot or cold conditions, the relationship between VE and VO2 includes the participation of the respiratory apparatus to the control of body temperature and water balance. Some compromise among these tasks is achieved through changes in breathing pattern, uncoupling changes in alveolar ventilation from VE. This article examines primarily the relationship between VE and VO2 under thermal stimuli. In the process, it considers how the relationship is influenced by hypoxia, hypercapnia or changes in metabolic level. The shuffling of tasks in emergency situations illustrates that the constraints on VE-VO2 for the protection of blood gases have ample room for flexibility. However, when other priorities do not interfere with the primary goal of gas exchange, VE follows metabolic rate quite closely. The fact that arterial CO2 remains stable when metabolism is changed by the most diverse circumstances (moderate exercise, cold, cold and exercise combined, variations in body size, caloric intake, age, time of the day, hormones, drugs, etc.) makes it unlikely that VE and metabolism are controlled in parallel by the condition responsible for the metabolic change. Rather, some observations support the view that the gaseous component of metabolic rate, probably CO2, may provide the link between the metabolic level and VE.

Item Details

Item Type:Refereed Article
Keywords:integrated ventilatory responses
Research Division:Biomedical and Clinical Sciences
Research Group:Cardiovascular medicine and haematology
Research Field:Respiratory diseases
Objective Division:Health
Objective Group:Clinical health
Objective Field:Clinical health not elsewhere classified
UTAS Author:Maskrey, M (Associate Professor Michael Maskrey)
ID Code:119243
Year Published:2011
Web of Science® Times Cited:36
Deposited By:Medicine
Deposited On:2017-07-28
Last Modified:2017-07-28
Downloads:0

Repository Staff Only: item control page