eCite Digital Repository

High-mass starless clumps in the inner galactic plane: the sample and dust properties


Yuan, J and Wu, Y and Ellingsen, SP and Evans II, NJ and Henkel, C and Wang, K and Liu, H-L and Liu, T and Li, J-Z and Zavagno, Z, High-mass starless clumps in the inner galactic plane: the sample and dust properties, Astrophysical Journal. Supplement Series, 231, (1) Article 11. ISSN 0067-0049 (2017) [Refereed Article]


Copyright Statement

Copyright 2017 The American Astronomical Society

DOI: doi:10.3847/1538-4365/aa7204


We report a sample of 463 high-mass starless clump (HMSC) candidates within -60° < 1 < 60° and -1° < b < 1°. This sample has been singled out from 10,861 ATLASGAL clumps. None of these sources are associated with any known star-forming activities collected in SIMBAD and young stellar objects identified using color-based criteria. We also make sure that the HMSC candidates have neither point sources at 24 and 70 μm nor strong extended emission at 24 μm. Most of the identified HMSCs are infrared dark, and some are even dark at 70 μm. Their distribution shows crowding in Galactic spiral arms and toward the Galactic center and some well-known star-forming complexes. Many HMSCs are associated with large-scale filaments. Some basic parameters were attained from column density and dust temperature maps constructed via fitting far-infrared and submillimeter continuum data to modified blackbodies. The HMSC candidates have sizes, masses, and densities similar to clumps associated with Class II methanol masers and H II regions, suggesting that they will evolve into star-forming clumps. More than 90% of the HMSC candidates have densities above some proposed thresholds for forming high-mass stars. With dust temperatures and luminosity-to-mass ratios significantly lower than that for star-forming sources, the HMSC candidates are externally heated and genuinely at very early stages of high-mass star formation. Twenty sources with equivalent radii req < 0.15 pc and mass surface densities Σ > 0.08 g cm−2 could be possible high-mass starless cores. Further investigations toward these HMSCs would undoubtedly shed light on comprehensively understanding the birth of high-mass stars.

Item Details

Item Type:Refereed Article
Keywords:infrared: ISM, ISM: clouds, stars: formation, stars: massive, submillimeter: ISM
Research Division:Physical Sciences
Research Group:Astronomical sciences
Research Field:Galactic astronomy
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the physical sciences
UTAS Author:Ellingsen, SP (Professor Simon Ellingsen)
ID Code:119109
Year Published:2017
Web of Science® Times Cited:20
Deposited By:Mathematics and Physics
Deposited On:2017-07-26
Last Modified:2018-04-27
Downloads:115 View Download Statistics

Repository Staff Only: item control page