eCite Digital Repository
Friction and diapycnal mixing at a slope: boundary control of potential vorticity
Citation
Benthuysen, J and Thomas, LN, Friction and diapycnal mixing at a slope: boundary control of potential vorticity, Journal of Physical Oceanography, 42, (9) pp. 1509-1523. ISSN 0022-3670 (2012) [Refereed Article]
![]() | PDF 1Mb |
Copyright Statement
Copyright 2012 American Meteorological Society
DOI: doi:10.1175/JPO-D-11-0130.1
Abstract
Although atmospheric forcing by wind stress or buoyancy flux is known to change the ocean’s potential vorticity (PV) at the surface, less is understood about PV modification in the bottom boundary layer. The adjustment of a geostrophic current over a sloped bottom in a stratified ocean generates PV sources and sinks through friction and diapycnal mixing. The time-dependent problem is solved analytically for a no-slip boundary condition, and scalings are identified for the change in PV that arises during the adjustment to steady state. Numerical experiments are run to test the scalings with different turbulent closure schemes. The key parameters that control whether PV is injected into or extracted from the fluid are the direction of the geostrophic current and the ratio of its initial speed to its steady-state speed. When the current is in the direction of Kelvin wave propagation, downslope Ekman flow advects lighter water under denser water, driving diabatic mixing and extracting PV. For a current in the opposite direction, Ekman advection tends to restratify the bottom boundary layer and increase the PV. Mixing near the bottom counteracts this restratification, however, and an increase in PV will only occur for current speeds exceeding a critical value. Consequently, the change in PV is asymmetric for currents of the opposite sign but the same speed, with a bias toward PV removal. In the limit of a large speed ratio, the change in PV is independent of diapycnal mixing.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | abyssal circulation, mixing, potential vorticity, topographic effects, friction, potential vorticity |
Research Division: | Earth Sciences |
Research Group: | Oceanography |
Research Field: | Physical oceanography |
Objective Division: | Environmental Management |
Objective Group: | Marine systems and management |
Objective Field: | Oceanic processes (excl. in the Antarctic and Southern Ocean) |
UTAS Author: | Benthuysen, J (Dr Jessica Benthuysen) |
ID Code: | 118979 |
Year Published: | 2012 |
Web of Science® Times Cited: | 32 |
Deposited By: | Oceans and Cryosphere |
Deposited On: | 2017-07-25 |
Last Modified: | 2017-10-24 |
Downloads: | 141 View Download Statistics |
Repository Staff Only: item control page