University of Tasmania
Browse

File(s) under permanent embargo

Spatial variation in fatty acid trophic markers in albacore tuna from the southwestern Pacific Ocean - A potential ‘tropicalization’ signal

journal contribution
posted on 2023-05-19, 07:33 authored by Parrish, CC, Pethybridge, H, Young, JW, Peter Nichols
Signature fatty acids were used to explore trophic variations in albacore and skipjack tuna sampled from the southwestern Pacific Ocean. There were clear spatial differences in fatty acid profiles between albacore sampled in the Coral (tropical zone centered at ~20°S) and Tasman (temperate zone centered at ~42°S) Seas; however, few differences were observed in fatty acid profiles of albacore sampled off Tasmania and New Zealand. Fatty acid signatures of the Tasman Sea samples reflected a food web based more on diatoms and included: 20:5ω3 (EPA), 18:1ω7, 22:1ω11, 18:2ω6, 18:4ω3, 18:3ω3, and 20:4ω3. In contrast, albacore from the Coral Sea had a distinct fatty acid signature which included 20:4ω6, 22:5ω6, 17:0, 22:4ω6, 24:0, and 17:1. Multivariate analyses revealed the importance of 22:6ω3 (DHA) in Coral Sea-caught albacore which also had a DHA/EPA ratio more than twice that in all other groups suggesting a greater dinoflagellate contribution and/or a higher trophic position. Fatty acid markers indicative of krill consumption were significantly higher in temperate-caught albacore although skipjack were closest in fatty acid composition to krill. These results were likely due to differences at the base of the food web in these two seas suggesting that signature fatty acids can be used as indicators of ecosystem change: in this case the gradual ‘tropicalization’ of the eastern seaboard of Australia through the southward extension of the East Australian Current. Our findings also indicate comparatively lower concentrations of healthful ω3 long-chain polyunsaturated fatty acids, in particular the content of DHA and EPA, in the tropical samples. This suggests that tropicalization could adversely affect the dietary intake of albacore and other marine predators in the region. Such changes are readily detectable by fatty acid analysis.

History

Publication title

Deep-Sea Research. Part 2

Volume

113

Pagination

199-207

ISSN

0967-0645

Department/School

Institute for Marine and Antarctic Studies

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Rights statement

Crown Copyright 2013

Repository Status

  • Restricted

Socio-economic Objectives

Ecosystem adaptation to climate change

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC