University of Tasmania
Browse

File(s) under permanent embargo

Deep-scattering layer, gas-bladder density, and size estimates using a two-frequency acoustic and optical probe

journal contribution
posted on 2023-05-19, 07:11 authored by Kloser, RJ, Ryan, TE, Keith, G, Gershwin, L-A
Estimating the biomass of gas-bladdered organisms in the mesopelagic ocean is a simple first step to understanding ecosystem structure. An existing two-frequency (38 and 120 kHz) acoustic and optical probe was lowered to 950 m to estimate the number and size of gas-bladders. In situ target strengths from 38 and 120 kHz and their difference were compared with those of a gas-bladder resonance-scattering model. Predicted mean equivalent spherical radius gas-bladder size varied with depth, ranging from 2.1 mm (shallow) to 0.6 mm (deep). Density of night-time organisms varied throughout the water column and were highest (0.019 m-3) in the 200–300 m depth range. Predictions of 38 kHz volume-backscattering strength (Sv) from the density of gas-bladdered organisms could explain 88% of the vessel's 38 kHz Sv at this location (S 40.9, E 166.7). Catch retained by trawls highlighted the presence of gas-bladdered fish of a similar size range but different densities while optical measurements highlighted the depth distribution and biomass of gas-inclusion siphonophores. Organism behaviour and gear selectivity limits the validation of acoustic estimates. Simultaneous optical verification of multifrequency or broadband acoustic targets at depth are required to verify the species, their size and biomass.

History

Publication title

ICES Journal of Marine Science

Volume

73

Issue

8

Pagination

2037-2048

ISSN

1054-3139

Department/School

Institute for Marine and Antarctic Studies

Publisher

Academic Press Ltd Elsevier Science Ltd

Place of publication

24-28 Oval Rd, London, England, Nw1 7Dx

Rights statement

Copyright 2016 International Council for the Exploration of the Sea

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC