eCite Digital Repository
Deep-scattering layer, gas-bladder density, and size estimates using a two-frequency acoustic and optical probe
Citation
Kloser, RJ and Ryan, TE and Keith, G and Gershwin, L-A, Deep-scattering layer, gas-bladder density, and size estimates using a two-frequency acoustic and optical probe, ICES Journal of Marine Science, 73, (8) pp. 2037-2048. ISSN 1054-3139 (2016) [Refereed Article]
Copyright Statement
Copyright 2016 International Council for the Exploration of the Sea
DOI: doi:10.1093/icesjms/fsv257
Abstract
Estimating the biomass of gas-bladdered organisms in the mesopelagic ocean is a simple first step to understanding ecosystem structure. An existing two-frequency (38 and 120 kHz) acoustic and optical probe was lowered to 950 m to estimate the number and size of gas-bladders. In situ target strengths from 38 and 120 kHz and their difference were compared with those of a gas-bladder resonance-scattering model. Predicted mean equivalent spherical radius gas-bladder size varied with depth, ranging from 2.1 mm (shallow) to 0.6 mm (deep). Density of night-time organisms varied throughout the water column and were highest (0.019 m-3) in the 200–300 m depth range. Predictions of 38 kHz volume-backscattering strength (Sv) from the density of gas-bladdered organisms could explain 88% of the vessel's 38 kHz Sv at this location (S 40.9, E 166.7). Catch retained by trawls highlighted the presence of gas-bladdered fish of a similar size range but different densities while optical measurements highlighted the depth distribution and biomass of gas-inclusion siphonophores. Organism behaviour and gear selectivity limits the validation of acoustic estimates. Simultaneous optical verification of multifrequency or broadband acoustic targets at depth are required to verify the species, their size and biomass.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | acoustic, fish, mesopelagic, optics, siphonophores, target strength |
Research Division: | Agricultural, Veterinary and Food Sciences |
Research Group: | Fisheries sciences |
Research Field: | Fish physiology and genetics |
Objective Division: | Expanding Knowledge |
Objective Group: | Expanding knowledge |
Objective Field: | Expanding knowledge in the biological sciences |
UTAS Author: | Kloser, RJ (Dr Rudy Kloser) |
ID Code: | 118322 |
Year Published: | 2016 |
Web of Science® Times Cited: | 38 |
Deposited By: | Directorate |
Deposited On: | 2017-07-10 |
Last Modified: | 2018-05-09 |
Downloads: | 0 |
Repository Staff Only: item control page