eCite Digital Repository

Poppy crop height and capsule volume estimation from a single UAS flight

Citation

Iqbal, F and Lucieer, A and Barry, K and Wells, R, Poppy crop height and capsule volume estimation from a single UAS flight, Remote Sensing, 9, (7) Article 647. ISSN 2072-4292 (2017) [Refereed Article]


Preview
PDF
4Mb
  

Copyright Statement

2017 by the authors. Licensed under Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0) http://creativecommons.org/licenses/by/4.0/

DOI: doi:10.3390/rs9070647

Abstract

The objective of this study was to estimate poppy plant height and capsule volume with remote sensing using an Unmanned Aircraft System (UAS). Data were obtained from field measurements and UAS flights over two poppy crops at Cambridge and Cressy in Tasmania. Imagery acquired from the UAS was used to produce dense point clouds using structure from motion (SfM) and multi-view stereopsis (MVS) techniques. Dense point clouds were used to generate a digital surface model (DSM) and orthophoto mosaic. An RGB index was derived from the orthophoto to extract the bare ground spaces. This bare ground space mask was used to filter the points on the ground, and a digital terrain model (DTM) was interpolated from these points. Plant height values were estimated by subtracting the DSM and DTM to generate a Crop Height Model (CHM). UAS-derived plant height (PH) and field measured PH in Cambridge were strongly correlated with R2 values ranging from 0.93 to 0.97 for Transect 1 and Transect 2, respectively, while at Cressy results from a single flight provided R2 of 0.97. Therefore, the proposed method can be considered an important step towards crop surface model (CSM) generation from a single UAS flight in situations where a bare ground DTM is unavailable. High correlations were found between UAS-derived PH and poppy capsule volume (CV) at capsule formation stage (R2 0.74), with relative error of 19.62%. Results illustrate that plant height can be reliably estimated for poppy crops based on a single UAS flight and can be used to predict opium capsule volume at capsule formation stage.

Item Details

Item Type:Refereed Article
Keywords:poppies, UAS, capsule volume, crop surface model, crop height, precision agriculture
Research Division:Agricultural and Veterinary Sciences
Research Group:Agriculture, Land and Farm Management
Research Field:Agricultural Spatial Analysis and Modelling
Objective Division:Plant Production and Plant Primary Products
Objective Group:Industrial Crops
Objective Field:Plant Extract Crops (e.g. Pyrethrum, Jojoba)
UTAS Author:Iqbal, F (Mr Faheem Iqbal)
UTAS Author:Lucieer, A (Associate Professor Arko Lucieer)
UTAS Author:Barry, K (Dr Karen Barry)
UTAS Author:Wells, R (Mr Reuben Wells)
ID Code:118041
Year Published:2017
Web of Science® Times Cited:12
Deposited By:Tasmanian Institute of Agriculture
Deposited On:2017-07-03
Last Modified:2018-05-22
Downloads:80 View Download Statistics

Repository Staff Only: item control page