University of Tasmania
Browse

File(s) under permanent embargo

Temporally specific miRNA expression patterns in the dorsal and ventral striatum of addiction-prone rats

journal contribution
posted on 2023-05-19, 06:11 authored by Quinn, RK, James, MH, Hawkins, GE, Brown, AL, Heathcote, A, Smith, DW, Cairns, MJ, Dayas, CV
MicroRNAs (miRNAs) within the ventral and dorsal striatum have been shown to regulate addiction-relevant behaviours. However, it is unclear how cocaine experience alone can alter the expression of addiction-relevant miRNAs within striatal subregions. Further, it is not known whether differential expression of miRNAs in the striatum contributes to individual differences in addiction vulnerability. We first examined the effect of cocaine self-administration on the expression of miR-101b, miR-137, miR-212 and miR-132 in nucleus accumbens core and nucleus accumbens shell (NAcSh), as well as dorsomedial striatum and dorsolateral striatum (DLS). We then examined the expression of these same miRNAs in striatal subregions of animals identified as being ‘addiction-prone’, either immediately following self-administration training or following extinction and relapse testing. Cocaine self-administration was associated with changes in miRNA expression in a regionally discrete manner within the striatum, with the most marked changes occurring in the nucleus accumbens core. When we examined the miRNA profile of addiction-prone rats following self-administration, we observed increased levels of miR-212 in the dorsomedial striatum. After extinction and relapse testing, addiction-prone rats showed significant increases in the expression of miR-101b, miR-137, miR-212 and miR-132 in NAcSh, and miR-137 in the DLS. This study identifies temporally specific changes in miRNA expression consistent with the engagement of distinct striatal subregions across the course of the addiction cycle. Increased dysregulation of miRNA expression in NAcSh and DLS at late stages of the addiction cycle may underlie habitual drug seeking, and may therefore aid in the identification of targets designed to treat addiction.

History

Publication title

Addiction Biology

Volume

23

Pagination

631-642

ISSN

1369-1600

Department/School

School of Psychological Sciences

Publisher

Wiley-Blackwell Publishing Ltd.

Place of publication

United Kingdom

Rights statement

© 2017 Commonwealth of Australia

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in psychology

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC